541
Views
41
CrossRef citations to date
0
Altmetric
Articles

Experiments and Mechanisms of Gas Explosion Suppression with Foam Ceramics

, &
Pages 2117-2127 | Received 01 Nov 2015, Accepted 17 Apr 2016, Published online: 28 Oct 2016

References

  • Battersby, P.N., Averill, A.F., Ingram, J.M., Holborn, P.G., and Nolan, P.F. 2012. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist: Part 2. Mitigation of vented deflagrations. Int. J. Hydrogen Energy, 37(24), 19258–19267.
  • Cao, X., Ren, J., Zhou, Y., Wang, Q., Gao, X., and Bi, M. 2015. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive. J. Hazard. Mater., 285, 311–318.
  • Cheikhravat, H., Goulier, J., Bentaib, A., Meynet, N., Chaumeix, N., and Paillard, C.E. 2015. Effects of water sprays on flame propagation in hydrogen/air/steam mixtures. Proc. Combust. Inst., 35, 2715–2722.
  • Chen, Z., Fan, B., and Jiang, X. 2006. Suppression effects of powder suppressants on the explosions of oxyhydrogen gas. J. Loss Prev. Process Ind., 19(6), 648–655.
  • Ciccarelli, G. 2012. Explosion propagation in inert porous media. Philos. Trans. R. Soc. London, Ser. A, 370(1960), 647–667.
  • Du, Y., Zhang, P., Zhou, Y., Wu, S., Xu, J., and Li, G. 2014. Suppressions of gasoline-air mixture explosion by non-premixed nitrogen in a closed tunnel. J. Loss Prev. Process Ind., 31, 113–120.
  • Ingram, J.M., Averill, A.F., Battersby, P., Holborn, P.G., and Nolan, P.F. 2013. Suppression of hydrogen/oxygen/nitrogen explosions by fine water mist containing sodium hydroxide additive. Int. J. Hydrogen Energy, 38(19), 8002–8010.
  • Joo, H.I., Duncan, K., and Ciccarelli, G. 2006. Flame-quenching performance of ceramic foam. Combust. Sci. Technol., 178(10–11), 1755–1769.
  • Liang, Y., and Zeng, W. 2010. Numerical study of the effect of water addition on gas explosion. J. Hazard. Mater., 174(1–3), 386–392.
  • Liu, X., Zhang, Q., and Wang, Y. 2015a. Influence of vapor-liquid two-phase n-heptane on the explosion parameters in air. Combust. Sci. Technol., 187(12), 1879–1904.
  • Liu, X., Zhang, Q., and Wang, Y. 2015b. Influence of particle size on the explosion parameters in two-phase vapor-liquid n-hexane/air mixtures. Process Saf. Environ. Prot., 95, 184–194.
  • Nemoto, T., Sasaki, S., and Hakuraku, Y. 1985. Thermal conductivity of alumina and silicon carbide ceramics at low temperatures. Cryogenics, 25(9), 531–532.
  • Nie, B., He, X., Zhang, R., Chen, W., and Zhang, J. 2011a. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. J. Hazard. Mater., 192(2), 741–747.
  • Nie, B., Zhang, R., and He, X. 2011b. Potential applications of foam ceramics in gas explosion prevention. Adv. Mater. Res., 284, 1330–1334.
  • Schwer, D.A., and Kailasanath, K. 2007. Numerical simulations of the mitigation of unconfined explosions using water-mist. Proc. Combust. Inst., 31(2), 2361–2369.
  • Shao, H., Jiang, S., Li, Q., Wu, Z., Zhang, W., and Wang, K. 2014. Suppression of gas explosion using vacuum chamber at different breakup times of diaphragm. J. Loss Prev. Process Ind., 31, 1–9.
  • Sun, J., Zhao, Y., Wei, C., Xie, S., and Huang, D. 2011. The comparative experimental study of the porous materials suppressing the gas explosion. Procedia Eng., 26, 954–960.
  • Takeno, T., and Hase, K. 1983. Effects of solid length and heat loss on an excess enthalpy flame. Combust. Sci. Technol., 31(3–4), 207–215.
  • Wang, C., Dong, X., Cao, J., and Ning, J. 2015. Experimental investigation of flame acceleration and deflagration-to-detonation transition characteristics using coal gas and air mixture. Combust. Sci. Technol., 187, 1805–1820.
  • Wang, C., Ma, T., and Lu, J. 2010. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas. Sci. China Phys. Mech. Astron., 53(2), 269–278.
  • Wen, X., Xie, M., Yu, M., Li, G., and Ji, W. 2013. Porous media quenching behaviors of gas deflagration in the presence of obstacles. Exp. Therm. Fluid Sci., 50, 37–44.
  • Ye, J., Chen, Z., and Fan, B. 2005. Suppression of methane explosions in a field-scale pipe. J. Loss Prev. Process Ind., 18(2), 89–95.
  • Ye, Q., Lin, B., Feng, T., Wang, H., and Jia, Z. 2008. Experimental study and attenuation analysis of methane explosion propagation in porous metallic materials. In International Symposium on Safety Science and Technology, Beijing, China; Progress in Safety Science and Technology Series, Beijing, China, 7, pp. 1102–1106.
  • Zhang, B., Shen, X., and Pang, L. 2015. Effects of argon/nitrogen dilution on explosion and combustion characteristics of dimethyl ether–air mixtures. Fuel, 159, 646–652.
  • Zhang, D., Nie, B., Wang, C., Zhao, F., Guo, J., Liu, X., Li, Q., Li, H., and Zhang, C. 2011. Preliminary research on porous foam ceramics against gas explosions in goaf. Procedia Eng., 26, 1330–1336.
  • Zhang, Z., Lin, B., Li, G., and Ye, Q. 2013. Explosion pressure characteristics of coal gas. Combust. Sci. Technol., 185(3), 514–531.
  • Zhao, C.Y., Lu, T.J., Hodson, H.P., and Jackson, J.D. 2004. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater. Sci. Eng., A, 367(1), 123–131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.