312
Views
6
CrossRef citations to date
0
Altmetric
Articles

Experimental Study on Flat Flame Combustion for Ultra Micro Gas Turbine Applications

, &
Pages 1307-1325 | Received 14 Sep 2016, Accepted 09 Feb 2017, Published online: 31 Mar 2017

References

  • Ahn, J., Eastwood, C., Sitzki, L., and Ronney, P.D. 2005. Gas-phase and catalytic combustion in heat-recirculating burners. Proc. Combust. Inst., 30, 2463–2472.
  • Andrews, G.E., and Bradley, D. 1972. The burning velocity of methane-air mixtures. Combust. Flame, 19, 275–288.
  • Belmont, E.L., Schoegl, I., and Ellzey, J.L. 2013. Experimental and analytical investigation of lean premixed methane/air combustion in a mesoscale counter-flow reactor. Proc. Combust. Inst., 34, 3361–3367.
  • Bosschaart, K.J., and De Goey, L.P.H. 2004. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame, 136, 261–269.
  • Botha, J.P., and Spalding, D.B. 1954. The laminar flame speed of propane/air mixtures with heat extraction from the flame. Proc. R. Soc. London, Ser. A, 225, 71–96.
  • Çengel, Y.A., and Boles, M.A. 2006. Thermodynamics: An Engineering Approach, 5th ed., Boston, McGraw-Hill Higher Education, Boston, MA.
  • Chou, S.K., Yang, W.M., Li, J., and Li, Z.W. 2010. Porous media combustion for micro thermophotovoltaic system applications. Appl. Energy, 87, 2862–2867.
  • Coffee, T.P., Kotlar, A.J., and Miller, M.S. 1984. The overall reaction concept in premixed, laminar, steady-state flames. II. Initial temperatures and pressures. Combust. Flame, 58, 59–67.
  • Decuypere, R., and Verstraete, D. 2005. Micro turbines from the standpoint of potential users. In Micro Gas Turbines. Educational Notes RTO-EN-AVT-131, Paper 15, pp. 15-1–15-14, Neuilly-sur-Seine, France
  • De Goey, L.P.H., Van Maaren, A., and Quax, R.M. 1993. Stabilization of adiabatic premixed laminar flames on a flat flame burner. Combust. Sci. Technol., 92, 201–207.
  • Eng, J.A., Zhu, D.L., and Law, C.K. 1995. On the structure, stabilization, and dual response of flat-burner flames. Combust. Flame, 100, 645–652.
  • Epstein, A.H. 2004. Millimeter-scale, micro-electro-mechanical systems gas turbine engines. J. Eng. Gas Turbines Power, 126, 205–226.
  • Fan, A., Maruta, K., Nakamura, H., and Liu, W. 2012. Experimental investigation of flame pattern transitions in a heated radial micro-channel. Appl. Therm. Eng., 47, 111–118.
  • Fan, A., Minaev, S., Kumar, S., Liu, W., and Maruta, K. 2007. Experimental study on flame pattern formation and combustion completeness in a radial microchannel. J. Micromech. Microeng., 17, 2398.
  • Ferguson, C.R., and Keck, J.C. 1979. Stand-off distances on a flat flame burner. Combust. Flame, 34, 85–98.
  • Fernandez-Pello, A.C. 2002. Micropower generation using combustion: Issues and approaches. Proc. Combust. Inst., 29, 883–899.
  • Gregor, M.A., and Dreizler, A. 2009. A quasi-adiabatic laminar flat flame burner for high temperature calibration. Meas. Sci. Technol., 20, 065402.
  • Guidez, J., Dumand, C., Courvoisier, T., and Orain, M. 2005. Specific problems of micro-gas turbine for micro drones application. Presented at the XVIIth International Symposium on Air Breathing Engines, Munich, Germany, September 4–9
  • Guidez, J., Roux, P., Poirson, N., Jourdanneau, E., Orain, M., and Grisch, F. 2009. Investigation of combustion in miniaturised combustor for application to micro gas turbines. In European Conference for Aero-Space Sciences, Progress in Propulsion Physics, EDP Sciences, Les Ulis, France, pp. 469–480.
  • Hartung, G., Hult, J., and Kaminski, C.F. 2006. A flat flame burner for the calibration of laser thermometry techniques. Meas. Sci. Technol., 17, 2485–2493.
  • Japan Quality Review. 2012. A promising technology for powering humanoid robots?—Development of an ultra-compact gas turbine capable of generating large amounts of power anywhere. Available at: http://jqrmag.com/en/technology/takumi-eng/a-promising-technology-for-powering-humanoid-robots-development-of-an-ultra-compact-gas-turbine-capable-of-generating-large-amounts-of-power-anywhere/.
  • Ju, Y., and Maruta, K. 2011. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci., 37, 669–715.
  • Kaisare, N.S., and Vlachos, D.G. 2012. A review on microcombustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci., 38, 321–359.
  • Kamada, T., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K. 2014. Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile. Combust. Flame, 161, 37–48.
  • Kang, X., and Veeraragavan, A. 2015. Experimental investigation of flame stability limits of a mesoscale combustor with thermally orthotropic walls. Appl. Therm. Eng., 85, 234–242.
  • Konnov, A.A. 2010. The effect of temperature on the adiabatic laminar burning velocities of CH4−air and H2−air flames. Fuel, 89, 2211–2216.
  • Kumar, S., Maruta, K., and Minaev, S. 2007. Experimental investigations on the combustion behavior of methane–air mixtures in a micro-scale radial combustor configuration. J. Micromech. Microeng., 17, 900.
  • Kurdyumov, V.N., Pizza, G., Frouzakis, C.E., and Mantzaras, J. 2009. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature. Combust. Flame, 156, 2190–2200.
  • Lee, K.H., and Kwon, O.C. 2007. A numerical study on structure of premixed methane-air microflames for micropower generation. Chem. Eng. Sci., 62, 3710–3719.
  • Li, J., Chou, S.K., Li, Z.W., and Yang, W.M. 2008. A comparative study of H2-air premixed flame in micro combustors with different physical and boundary conditions. Combust. Theor. Model., 12, 325–347.
  • Li, J., Chou, S.K., Li, Z.W., and Yang, W.M. 2010. Experimental investigation of porous media combustion in a planar micro-combustor. Fuel, 89, 708–715.
  • Liao, S.Y., Jiang, D.M., and Cheng, Q. 2004. Determination of laminar burning velocities for natural gas. Fuel, 83, 1247–1250.
  • Marbach, T.L., and Agrawal, A.K. 2006. Heat-recirculating combustor using porous inert media for mesoscale applications. J. Propul. Power, 22, 145–150.
  • Marbach, T.L., Sadasivuni, V., and Agrawal, A.K. 2007. Investigation of a miniature combustor using porous media surface stabilized flame. Combust. Sci. Technol., 179, 1901–1922.
  • Maruta, K. 2011. Micro and mesoscale combustion. Proc. Combust. Inst., 33, 125–150.
  • Maruta, K., Kataoka, T., Kim, N.I., Minaev, S., and Fursenko, R. 2005. Characteristics of combustion in a narrow channel with a temperature gradient. Proc. Combust. Inst., 30, 2429–2436.
  • Maruta, K., Parc, J.K., Oh, K.C., Fujimori, T., Minaev, S.S., and Fursenko, R.V. 2004. Characteristics of microscale combustion in a narrow heated channel. Combust. Explos. Shock Waves, 40, 516–523.
  • Matsuo, E., Yoshiki, H., Nagashima, T., and Kato, C. 2003. Towards the development of finger-top gas turbines. Presented at the International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, PowerMEMS 2003, Makuhari, Japan.
  • Mehra, A., and Waitz, I.A. 1998. Development of a hydrogen combustor for a microfabricated gas turbine engine. Presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June 8–11.
  • Minaev, S., Maruta, K., and Fursenko, R. 2007. Nonlinear dynamics of flame in a narrow channel with a temperature gradient. Combust. Theor. Model., 11, 187–203.
  • Mishra, D.P. 2003. Effects of initial temperature on the structure of laminar CH4-air premixed flames. Fuel, 82, 1471–1475.
  • Nagashima, T., et al. 2005. Lessons learnt from the ultra-micro gas turbine development at University of Tokyo. In Micro Gas Turbines. Educational Notes RTO-EN-AVT-131, Paper 14, pp. 14-1–14-58, Neuilly-sur-Seine, France.
  • Nicoul, F.X., Guidez, J., Dessornes, O., and Ribaud, Y. 2007. Two stage ultra micro turbine: Thermodynamic and performance study. Presented at the International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, PowerMEMS 2007, Freiburg, Germany, November 28–29.
  • Peirs, J., Reynaerts, D., and Verplaetsen, F. 2004. A microturbine for electric power generation. Sens. Actuators, A, 113, 86–93.
  • Peirs, J., Van Den Braembussche, R., Hendrick, P., Baelmans, M., Driesen, J., Puers, R., Al-Bender, F., Waumans, T., Vleugels, P., and Ferraris, E. 2007a. Development of a gas turbine generator with a 20 mm rotor. Presented at the International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, PowerMEMS 2007, Freiburg, Germany, November 28–29.
  • Peirs, J., Waumans, T., Vleugels, P., Al-Bender, F., Stevens, T., Verstraete, T., Stevens, S., D’hulst, R., Verstraete, D., Fiorini, P., Van Den Braembussche, R., Driesen, J., Puers, R., Hendrick, P., Baelmans, M., and Reynaerts, D. 2007b. Micropower generation with microgasturbines: A challenge. J. Mech. Eng. Sci., 221, 489–500.
  • Pizza, G., Frouzakis, C.E., Mantzaras, J., Tomboulides, A.G., and Boulouchos, K. 2010. Three-dimensional simulations of premixed hydrogen/air flames in microtubes. J. Fluid Mech., 658, 463–491.
  • Prucker, S., Meier, W., and Stricker, W. 1994. A flat flame burner as calibration source for combustion research: Temperatures and species concentrations of premixed H2/air flames. Rev. Sci. Instrum., 65, 2908–2911.
  • Sakurai, T., Yuasa, S., Honda, T., and Shimotori, S. 2009. Heat loss reduction and hydrocarbon combustion in ultra-micro combustors for ultra-micro gas turbines. Proc. Combust. Inst., 32, 3067–3073.
  • Sakurai, T., Yuasa, S., Ono, Y., and Honda, T. 2013. Flame stability and emission characteristics of propane-fueled flat-flame miniature combustor for ultra-micro gas turbines. Combust. Flame, 160, 2497–2506.
  • Sitzki, L., Borer, K., Schuster, E., and Ronney, P.D. 2001. Combustion in microscale heat-recirculating burners. Presented at the The Third Asia-Pacific Conference on Combustion, Seoul, Korea, June 24–27.
  • Spadaccini, C.M., Mehra, A., Lee, J., Zhang, X., Lukachko, S., and Waitz, I.A. 2003a. High power density silicon combustion systems for micro gas turbine engines. J. Eng. Gas Turbine Power, 125, 709–719.
  • Spadaccini, C.M., Zhang, X., Cadou, C.P., Miki, N., and Waitz, I.A. 2003b. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor. Sens. Actuators, A, 103, 219–224.
  • Stone, R., Clarke, A., and Beckwith, P. 1998. Correlations for the laminar-burning velocity of methane/diluent/air mixtures obtained in free-fall experiments. Combust. Flame, 114, 546–555.
  • Sutton, G., Levick, A., Edwards, G., and Greenhalgh, D. 2006. A combustion temperature and species standard for the calibration of laser diagnostic techniques. Combust. Flame, 147, 39–48.
  • Turkeli-Ramadan, Z. 2010. HEX-Combustor for ultra micro gas turbine. Master Thesis. The University of Tokyo, Japan.
  • Turkeli-Ramadan, Z., Sharma, R.N., and Raine, R.R. 2012. Investigation of the effects of flame holder on the combustion characteristics of a flat flame micro combustor. In ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, November 9–15; American Society of Mechanical Engineers, New York, pp. 295–304.
  • Turkeli-Ramadan, Z., Sharma, R.N., and Raine, R.R. 2013. Experimental investigation of the effects of preheating on the flame stability of natural gas-air premixture of a flat flame micro combustor for ultra micro gas turbine Presented at the XXIth International Symposium on Air Breathing Engines, Busan, Korea, September 9–13.
  • Turkeli-Ramadan, Z., Sharma, R.N., and Yamaguchi, K. 2011. Combustion characteristics of HEX-Combustor for ultra micro gas turbine. Presented at the European Combustion Meeting, Cardiff, UK, June 27–July 1.
  • Turkeli-Ramadan, Z., Yamaguchi, K., Okamoto, K., and Sakurai, T. 2010. Experimental study on heat exchanger (HEX)-combustor for ultra micro gas turbine. Presented at the Asian Joint Conference on Propulsion and Power, Miyazaki, Japan, March 4–6.
  • United States Environmental Protection Agency. 2016. Overview of greenhouse gases. Available at: https://www.epa.gov/ghgemissions/overview-greenhouse-gases.
  • Van Maaren, A., Thung, D.S., and De Goey, L.P.H. 1994. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol., 96, 327–344.
  • Veeraragavan, A., and Cadou, C.P. 2008. Heat transfer in mini∕microchannels with combustion: A simple analysis for application in nonintrusive IR diagnostics. J. Heat Transfer, 130, 124504.
  • Veeraragavan, A., and Cadou, C.P. 2011. Flame speed predictions in planar micro/mesoscale combustors with conjugate heat transfer. Combust. Flame, 158, 2178–2187.
  • Vican, J., Gajdeczko, B.F., Dryer, F.L., Milius, D.L., Aksay, I.A., and Yetter, R.A. 2002. Development of a microreactor as a thermal source for microelectromechanical systems power generation. Proc. Combust. Inst., 29, 909–916.
  • Vijayan, V., and Gupta, A.K. 2010a. Combustion and heat transfer at meso-scale with thermal recuperation. Appl. Energy, 87, 2628–2639.
  • Vijayan, V., and Gupta, A.K. 2010b. Flame dynamics of a meso-scale heat recirculating combustor. Appl. Energy, 87, 3718–3728.
  • Vijayan, V., and Gupta, A.K. 2011. Thermal performance of a meso-scale liquid-fuel combustor. Appl. Energy, 88, 2335–2343.
  • Wierzbicki, T.A., Lee, I.C., and Gupta, A.K. 2014. Combustion of propane with Pt and Rh catalysts in a meso-scale heat recirculating combustor. Appl. Energy, 130, 350–356.
  • Yuasa, S., and Oshimi, K. 2002. Concept and experiment of a flat-flame micro-combustor for ultra micro gas turbine. Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, Indianapolis, IN, July 7–10.
  • Yuasa, S., Oshimi, K., Nose, H., and Tennichi, Y. 2005a. Concept and combustion characteristics of ultra-micro combustors with premixed flame. Proc. Combust. Inst., 30, 2455–2462.
  • Yuasa, S., Oshimi, K., and Wong, S.F. 2005b. Specified problems and development of prototypes of ultra-micro combustor. Presented at the XVIIth International Symposium on Air Breathing Engines, Munich, Germany, September 4–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.