1,485
Views
3
CrossRef citations to date
0
Altmetric
Articles

The Computational Singular Perturbation/Perfectly Stirred Reactor Approach in Reduced Chemistry of Premixed Ethanol Combustion

&
Pages 1659-1680 | Received 27 Oct 2016, Accepted 03 Apr 2017, Published online: 25 May 2017

References

  • Albrecht, B.A. 2004. Reactor modeling and process analysis for partial oxidation of natural gas. Disservation. University of Twente, Enschede, the Netherlands.
  • Black, G., Curran, H.J., Pichon, S., Simmie, J.M., and Zhukov, V. 2010. Bio-butanol: Combustion properties and detailed chemical kinetic model. Combust. Flame, 157(2), 363–373.
  • Dagaut, P., Sarathy, S.M., and Thomson, M.J. 2009. A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. Proc. Combust. Inst., 32(1), 229–237.
  • Dagaut P., and Togbé, C. 2012. Oxidation kinetics of mixtures of iso-octane with ethanol or butanol in a jet-stirred reactor: Experimental and modeling study. Combust. Sci. Technol., 184(7–8), 1025–1038.
  • De Jager, B. 2007. Combustion and noise phenomena in turbulent alkane flames. Thesis. University of Twente, Enschede, the Netherlands.
  • Dubey, R., Bhadraiah, K., and Raghavan, V. 2010. On the estimation and validation of global single-step kinetics parameters of ethanol-air oxidation using diffusion flame extinction data. Combust. Sci. Technol., 183(1), 43–50.
  • Egolfopoulos, F.N., Du, D.X., and Law, C.K. 1992. A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes. Symp. (Int.) Combust., 24, 833–841.
  • Goevert, S., Mira, D., Kok, J.B.W., Vazquez, M., and Houzeaux, G. 2015. Turbulent combustion modelling of a confined premixed methane/air jet flame using tabulated chemistry. Energy Procedia, 66, 313–316.
  • Goussis, D.A., Lam, S.H., and Gnoffo, P.A. 1990. Reduced and simplified chemical kinetics for air dissociation using computational singular perturbation. Presented at the 28th Aerospace Sciences Meeting, Reno, NV, January 8–11.
  • Guldberg, C.M., and Waage, P. 1879. Concerning chemical affinity. Erdmann’s J. Practische Chemie, 127, 69–114.
  • Gülder, Ö. L. 1982. Laminar burning velocities of methanol, ethanol and isooctane-air mixtures. Symp. (Int.) Combust., 19, 275–281.
  • Kee, R.J., Rupley, F.M., and Miller, J.A. 1989. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical report. Sandia National Laboratory, Livermore, CA.
  • Kuo, K.K. 1986. Principles of Combustion, Wiley, New York.
  • Lam, S.H., and Goussis, D.A. 1991. Conventional asymptotics and computational singular perturbation for simplified kinetics modelling. In M.D. Smooke (Ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Springer, Berlin Heidelberg, pp. 227–242.
  • Lam, S.H., and Goussis, D.A. 1994. The CSP method for simplifying kinetics. Int. J. Chem. Kinet., 26(4), 461–486.
  • Lu, T., Ju, Y., and Law, C.K. 2001. Complex CSP for chemistry reduction and analysis. Combust. Flame, 126(1), 1445–1455.
  • Ma, L., Naud, B., and Roekaerts, D. 2016. Transported pdf modeling of ethanol spray in hot-diluted coflow flame. Flow Turbul. Combust., 96(2), 469–502.
  • Marinov, N.M. 1999. A detailed chemical kinetic model for high temperature ethanol oxidation. Int. J. Chem. Kinet., 31(3), 183–220.
  • Massias, A., Diamantis, D., Mastorakos, E., and Goussis, D.A. 1999. An algorithm for the construction of global reduced mechanisms with CSP data. Combust. Flame, 117(4), 685–708.
  • Mattos, L.V., and Noronha, F.B. 2005. Hydrogen production for fuel cell applications by ethanol partial oxidation on PT/CEO 2 catalysts: The effect of the reaction conditions and reaction mechanism. J. Catal., 233(2), 453–463.
  • Norton, T.S., and Dryer, F.L. 1992. An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor. Int. J. Chem. Kinet., 24(4), 319–344.
  • Okuyama, M., Hirano, S., Ogami, Y., Nakamura, H., Ju, Y., and Kobayashi, H. 2010. Development of an ethanol reduced kinetic mechanism based on the quasi-steady state assumption and feasibility evaluation for multi-dimensional flame analysis. J. Therm. Sci. Technol., 5(2), 189–199.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, R.T. Edwards, Inc., Philadelphia, PA.
  • Pope, S.B. 2001. Turbulent Flows, Cambridge University Press, Cambridge, UK.
  • Röhl, O., and Peters, N. 2009. A reduced mechanism for ethanol oxidation. Presented at the 4th European Combustion Meeting, Vienna, Austria, April 14–17.
  • Sallevelt, J.L.H.P., Gudde, J.E.P., Pozarlik, A.K., and Brem, G. 2014. The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine. Appl. Energy, 132, 575–585.
  • San Diego Mechanism. 2015. Chemical kinetic mechanisms for combustion applications. Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego. Available at: http://combustion.ucsd.edu.
  • Saxena, P. 2007. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes. Thesis, University of California, San Diego, CA.
  • Van Oijen, J.A., Lammers, F.A., and De Goey, L.P.H. 2001. Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame, 127(3), 2124–2134.
  • Williams, F.A. 1985. Turbulent combustion. Math. Combust., 2, 267–294.
  • Yalamanchili, S., Sirignano, W.A., Seiser, R., and Seshadri, K. 2005. Reduced methanol kinetic mechanisms for combustion applications. Combust. Flame, 142(3), 258–265.