753
Views
34
CrossRef citations to date
0
Altmetric
Articles

Solution Combustion Synthesis of Copper Nanopowders: The Fuel Effect

, , , , & ORCID Icon
Pages 1878-1890 | Received 21 Oct 2016, Accepted 22 May 2017, Published online: 13 Jul 2017

References

  • Aruna, S.T., and Mukasyan, A.S. 2008. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci., 12, 44–50.
  • Balti, I., Mezni, A., Dakhlaoui-Omrani, A., Léone, P., Viana, B., Brinza, O., Smiri, L.-S. and Jouini, N. 2011. Comparative study of Ni- and Co-substituted ZnO nanoparticles: Synthesis, optical, and magnetic properties. J. Phys. Chem. C, 115, 15758–15766.
  • Barin, I., and Knacke, O. 1973. Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin.
  • Barin, I., Knacke, O., and Kubaschewski, O. 1977. Thermochemical Properties of Inorganic Substances: Supplement, Springer-Verlag, Berlin.
  • Chen, H.M., and Liu, R.-S. 2011. Architecture of metallic nanostructures: Synthesis strategy and specific applications. J. Phys. Chem. C, 115, 3513–3527.
  • Chernavskii, P.A., Afanas’ev, P.V., Pankina, G.V., and Perov, N.S. 2008. Formation of Co nanoparticles in the process of thermal decomposition of the cobalt complex with hexamethylenetetramine (NO3)2Co(H2O)6(HMTA)2 4(H2O). Russ. J. Phys. Chem. A, 82, 2176–2181.
  • Dhas, N.A., Raj, C.P., and Gedanken, A. 1998. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater., 10, 1446–1452.
  • Di Paola, C., DʼAgosta, R., and Baletto, F. 2016. Geometrical effects on the magnetic properties of nanoparticles. Nano Lett., 16, 2885–2889.
  • Ely, T.O., Amiens, C., Chaudret, B., Snoeck, E., Verelst, M., Respaud, M., and Broto, J.-M. 1999. Synthesis of nickel nanoparticles: Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem. Mater., 11, 526–529.
  • Gawande, M.B., Goswami, A., Felpin, F.X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., and Varma, R.S. 2016. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev., 116, 3722–3811.
  • Gong, J., Yue, H., Zhao, Y., Zhao, S., Zhao, L., Lv, J., Wang, S., and Ma, X. 2012. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu°-Cu+ sites. J. Am. Chem. Soc., 134, 13922–13925.
  • Grabow, L.C., and Mavrikakis, M. 2011. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal., 1, 365–384.
  • Jain, P.K., Huang, X., El-Sayed, I.H., and El-Sayed, M.A. 2007. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2, 107–118.
  • Jeon, T.Y., Watanabe, M., and Miyatake, K. 2014. Carbon segregation-induced highly metallic Ni nanoparticles for electrocatalytic oxidation of hydrazine in alkaline media. ACS Appl. Mater. Interfaces, 6, 18445–18449.
  • Khalil, A., Hashaikeh, R., and Jouiad, M. 2014. Synthesis and morphology analysis of electrospun copper nanowires. J. Mater. Sci., 49, 3052–3065.
  • Khina, B.B., and Grinchuk, P.S. 2011. Modeling of iron scale reduction by methane conversion products in a plasma jet. I. Thermodynamic modeling. J. Eng. Phys. Thermophys., 84, 280–286.
  • Kumar, A., Cross, A., Manukyan, K., Bhosale, R.R., van den Broeke, L.J.P., Miller, J.T., Mukasyan, A.S., and Wolf, E.E. 2015. Combustion synthesis of copper–nickel catalysts for hydrogen production from ethanol. Chem. Eng. J., 278, 46–54.
  • Kumar, A., Mukasyan, A.S., and Wolf, E.E. 2011a. Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming. Appl. Catal. A, 401, 20–28.
  • Kumar, A., Wolf, E.E., and Mukasyan, A.S. 2011b. Solution combustion synthesis of metal nanopowders: Copper and copper/nickel alloys. Reac. Kinet. Catal., 57, 3473–3479.
  • Lewis, C.S., Wang, L., Liu, H., Han, J., and Wong, S.S. 2014. Synthesis, characterization, and formation mechanism of crystalline Cu and Ni metallic nanowires under ambient, seedless, surfactantless conditions. Cryst. Growth Des., 14, 3825–3838.
  • Lin, C.S., Lam, F.L.-Y., Hu, X., Tam, W.Y., and Ng, K.M. 2008. Synthesis of metallic nanostructures using chemical fluid deposition. J. Phys. Chem. C, 112, 10068–10072.
  • Liu, Y., Liu, X., Zhan, Y., Fan, H. and Lu, Y. 2015. Copper nanocoils synthesized through solvothermal method. Sci. Rep., 5, 16879.
  • Mandal, M., Kundu, S., Sau, T.K., Yusuf, S.M. and Pal, T. 2003. Synthesis and characterization of superparamagnetic Ni−Pt nanoalloy. Chem. Mater., 15, 3710–3715.
  • Manukyan, K.V., Cross, A., Roslyakov, S., Rouvimov, S., Rogachev, A.S., Wolf, E.E. and Mukasyan, A.S. 2013. Solution combustion synthesis of nano-crystalline metallic materials: Mechanistic studies. J. Phys. Chem. C, 117, 24417–24427.
  • Mistry, H., Varela, A.S., Bonifacio, C.S., Zegkinoglou, I., Sinev, I., Choi, Y.W., Kisslinger, K., Stach, E.A., Yang, J.C., Strasser, P. and Cuenya, B.R. 2016. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun., 7, 12123.
  • Mukasyan, A.S., Rogachev, A.S., and Aruna, S.T. 2015. Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol., 26, 954–976.
  • Patil, K.C., Hegde, M.S., Rattan, T., and Aruna, S.T. 2008. Chemistru of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, World Scientific Publishing Co. Pte. Ltd., Singapore.
  • Querejeta-Fernández, A., Parras, M., Varela, A., del Monte, F., Garcıá -Hernández, M. and González-Calbet, J.M. 2010. Urea-melt assisted synthesis of Ni/NiO nanoparticles exhibiting structural disorder and exchange bias. Chem. Mater., 22, 6529–6541.
  • Rogachev, A.S., and Mukasyan, A.S. 2015. Combustion for Material Synthesis, CRC Press, Taylor & Francis Group.
  • Roslyakov, S.I., Kovalev, D.Y., Rogachev, A.S., Manukyan, K., and Mukasyan, A.S. 2012. Solution combustion synthesis: Dynamics of phase formation for highly porous nickel. Phys. Chem., 449, 48–51.
  • Roth, P. 2007. Particle synthesis in flames. Proc. Combust. Inst., 31, 1773–1788.
  • Shen, X., Cao, K., Jing, M., and Zhang, C. 2007. Metal Fe, Ni and Fe-Ni fine fibers derived from the organic gel-thermal reduction process. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 22, 577–581.
  • Tamura, M., Kitanaka, T., Nakagawa, Y., and Tomishige, K. 2016. Cu sub-nanoparticles on Cu/CeO2 as an effective catalyst for methanol synthesis from organic carbonate by hydrogenation. ACS Catal., 6, 376–380.
  • Toshima, N., and Yonezawa, T. 1998. Bimetallic nanoparticles—Novel materials for chemical and physical applications. New J. Chem., 22, 1179–1201.
  • Trusov, G.V., Tarasov, A.B., Goodilin, E.A., Rogachev, A.S., Roslyakov, S.I., Rouvimov, S., Podbolotov, K.B., and Mukasyan, A.S. 2016. Spray solution combustion synthesis of metallic hollow microspheres. J. Phys. Chem. C, 120, 7165–7171.
  • Van Werde, K., Mondelaers, D., Vanhoyland, G., Nelis, D., Van Bael, M.K., Mullens, J., Van Poucke, L.C., Van Der Veken, B., and Desseyn, H.O. 2002. Thermal decomposition of the ammonium zinc acetate citrate precursor for aqueous chemical solution deposition of ZnO. J. Mater. Sci., 37, 81–88.
  • Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V. 2016. Solution combustion synthesis of nanoscale materials. Chem Rev.
  • Wautelet, M. 2009. Nanotechnologies, The Institution of Engineering and Technology, London.
  • Winnischofer, H., Rocha, T.C., Nunes, W.C., Socolovsky, L.M., Knobel, M., and Zanchet, D. 2008. Chemical synthesis and structural characterization of highly disordered Ni colloidal nanoparticles. ACS Nano, 2, 1313–1319.
  • Yamamoto, Y., Miura, T., Suzuki, M., Kawamura, N., Miyagawa, H., Nakamura, T., Kobayashi, K., Teranishi, T. and Hori, H. 2004. Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett., 93, 116801.
  • Yan, J.M., Zhang, X.B., Han, S., Shioyama, H. and Xu, Q. 2009. Synthesis of longtime water/air-stable ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Inorg. Chem., 48, 7389–7393.
  • Yufanyi, D.M., Ondoh, A.M., Foba-Tendo, J., and Mbadcam, K.J. 2015. Effect of decomposition temperature on the crystallinity of α-Fe2O3 (hematite) obtained from an Iron(III)-hexamethylenetetramine precursor. Am. J. Chem., 5, 1–9.
  • Zhang, D., Li, G., and Yu, J.C. 2009. Synthesis of size-tunable monodispersed metallic nickel nanocrystals without hot injection. Cryst. Growth Des., 9, 2812–2815.
  • Zhang, P., Dai, X., Zhang, X., Chen, Z., Yang, Y., Sun, H., Wang, X., Wang, H., Wang, M., Su, H., Li, D., Li, X. and Qin, Y. 2015. One-pot synthesis of ternary Pt–Ni–Cu nanocrystals with high catalytic performance. Chem. Mater., 27, 6402–6410.
  • Zhou, L.P., Ohta, K., Kuroda, K., Lei, N., Matsuishi, K., Gao, L., Matsumoto, T. and Nakamura, J. 2005. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. J. Phys. Chem. B, 109, 4439–4447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.