203
Views
7
CrossRef citations to date
0
Altmetric
Articles

Assessment of Algebraic Flame Surface Density Closures in the Context of Large Eddy Simulations of Head-On Quenching of Turbulent Premixed Flames

, &
Pages 1966-1991 | Received 06 Jan 2017, Accepted 12 Jun 2017, Published online: 09 Aug 2017

References

  • Allauddin, U., Pfitzner, M., Klein, M., and Chakraborty, N. 2017. A-priori and a-posteriori analysis of algebraic flame surface density modelling in the context of large eddy simulation of turbulent premixed combustion. Numer. Heat Trans. A. 71(2), 153–171.
  • Alshaalan, T.M., and Rutland, C.J. 1998. Turbulence, scalar transport, and reaction rates in flame-wall interaction. Proc. Combust. Inst., 27, 793.
  • Alshaalan, T.M., and Rutland, C.J. 2002. Wall heat flux in turbulent premixed reacting flow. Combust. Sci. Technol., 174, 135.
  • Boger, M., Veynante, D., Boughanem, H., and Trouvé, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst., 27, 917.
  • Bruneaux, G., Akselvoll, K., Poinsot, T., and Ferziger, J. 1996. Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame, 107, 27.
  • Bruneaux, G., Poinsot, T., and Ferziger, J. 1997. Premixed flame-wall interaction in a turbulent channel flow: Budget for the flame surface density evolution equation and modelling. J. Fluid Mech., 349, 191.
  • Butz, D., Gao, Y., Kempf, A.M., and Chakraborty, N. 2015. Large eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame, 162, 3180.
  • Candel, S., Veynante, D., Lacas, F., Maistret, E., Darabhia, N., and Poinsot, T. 1990. Coherent flamelet model: Applications and recent extensions. In B.E. Larrouturou (Ed.), Recent Advances in Combustion Modelling, World Scientific, Singapore, pp. 19–64.
  • Candel, S.M., and Poinsot, T.J. 1990. Flame stretch and the balance equation for the flame area, Combust. Sci. Technol., 70, 1.
  • Cant, R.S., and Bray, K.N.C. 1988. Strained laminar flamelet calculations of premixed turbulent combustion in a closed vessel. Proc. Combust. Inst., 22, 791.
  • Cant, R.S., Pope, S.B., and Bray, K.N.C. 1990. Modelling of flamelet surface to volume ratio in turbulent premixed combustion. Proc. Combust. Inst., 23, 809.
  • Chakraborty, N., and Cant, R.S. 2007. A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation. Phys. Fluids, 19, 105101.
  • Chakraborty, N., and Cant, R.S. 2009. Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation. Proc. Combust. Inst., 32, 1445.
  • Chakraborty, N., and Cant, R.S. 2011. Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame, 158, 1768.
  • Chakraborty, N., and Klein, M. 2008. A-priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids, 20, 085108.
  • Charlette, F., Meneveau, C., and Veynante, D. 2002. A power law wrinkling model for LES of premixed turbulent combustion, Part I: Non dynamic formulation and initial tests. Combust. Flame, 131, 159.
  • Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E., Klasky, S., Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., and Yoo, C. 2009. Terascale direct numerical simulations of turbulent combustion using s3d. Comput. Sci. Discov., 2, 015001.
  • Dabireau, F., Cuenot, B., Vermorel, O., and Poinsot, T. 2013. Interaction of flames of H2 + O2 with inert walls. Combust. Flame, 135, 123.
  • Fureby, C. 2005. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst., 30, 593.
  • Gruber, A., Chen, J.H., Valiev, D., and Law, C.K. 2012. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech., 709, 516.
  • Gruber, A., Sankaran, R., Hawkes, E., and Chen, J. 2010. Turbulent flame-wall interaction: A direct numerical simulation study. J. Fluid Mech., 658, 5.
  • Hawkes, E.R., and Cant, R.S. 2000. A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc. Combust. Inst., 28, 51.
  • Hawkes, E.R., and Cant, R.S. 2001. Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame, 126, 1617.
  • Hernandez-Perez, F.E., Yuen, F.T.C., Groth, C.P.T., and Gülder, Ö.L. 2011. LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proc. Combust. Inst., 33, 1365.
  • Heywood, J.B. 1988. Internal Combustion Engine Fundamentals, McGraw-Hill, New York.
  • Huang, W.M., Vosen, S.R., and Greif, R. 1986. Heat transfer during laminar flame quenching. Proc. Combust. Inst., 21, 1853.
  • Jarosinsky, J. 1986. A survey of recent studies on flame extinction. Combust. Sci. Technol., 12, 81.
  • Jenkins, K.W., and Cant, R.S. 1999. Direct numerical simulation of turbulent flame kernels. In: Liu C, Sakell L, Beautner T, editors.Proc. Second AFOSR Conf. onDNS and LES. Kluwer Academic Publishers; Dordrecht, Netherlands, 1999. pp. 191–202.
  • Katragadda, M., Chakraborty, N., and Cant, R.S. 2012a. A-priori DNS assessment of wrinkling factor based algebraic flame surface density models in the context of large eddy simulations for non-unity Lewis number flames in the thin reaction zones regime. J. Combust., 2012, 17pp. Article ID 794671.
  • Katragadda, M., Chakraborty, N., and Cant, R.S. 2012b. Effects of turbulent Reynolds number on the performance of algebraic flame surface density models for large eddy simulation in the thin reaction zones regime: A direct numerical simulation analysis. J. Combust., 2012, 13pp. Article ID 353257.
  • Katragadda, M., Gao, Y., and Chakraborty, N. 2014. Modelling of the strain rate contribution to the FSD transport for non-unity Lewis number flames in LES. Combust. Sci. Technol., 186, 1338.
  • Kempf, A.M., Wysocki, S., and Pettit, M. 2012. An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids, 60, 58.
  • Keppeler, R., Pfitzner, M., Tay-Wo-Chong, L., Komarek, T., and Polifke, W. 2012. Including heat loss and quench effects in algebraic models for large eddy simulation of premixed combustion. Paper No. GT2012–68689. Proceedings of ASME Turbo Expo 2012, June 11-15, 2012, Copenhagen, Denmark.
  • Keppeler, R., Tangermann, E., Allaudin, U., and Pfitzner, M. 2014. LES of low to high turbulent combustion in an elevated pressure environment. Flow Turbul. Combust., 92, 767.
  • Klein, M., Chakraborty, N., and Pfitzner, M. 2016. Analysis of the combined modelling of subgrid transport and filtered flame propagation for premixed turbulent combustion. Flow Turbul. Combust., 96, 921.
  • Lai, J., and Chakraborty, N. 2016a. Effects of Lewis number on head on quenching of turbulent premixed flame: A direct numerical simulation analysis. Flow Turbul. Combust., 96, 279.
  • Lai, J., and Chakraborty, N. 2016b. Statistical behaviour of scalar dissipation rate for head on quenching of turbulent premixed flames: A direct numerical simulation analysis. Combust. Sci. Technol., 188, 250.
  • Lai, J., and Chakraborty, N. 2016c. A-priori direct numerical simulation modelling of scalar dissipation rate transport in head-on quenching of turbulent premixed flames. Combust. Sci. Technol., 188, 1440.
  • Lai, J., Moody, A., and Chakraborty, N. 2017. Turbulent kinetic energy transport in head-on quenching of turbulent premixed flames in the context of Reynolds Averaged Navier Stokes simulations. Fuel. 199, 456–477. doi.org/10.1016/j.fuel.2017.02.091.
  • Liu, S., Meneveau, C., and Katz, J. 1994. On the properties of similarity subgrid scale models as deduced from measurements in a turbulent jet. J. Fluid. Mech., 275, 83.
  • Ma, T., Gao, Y., Kempf, A,M., and Chakraborty, N. 2014b. Validation and implementation of algebraic LES modelling of scalar dissipation rate for reaction rate closure in turbulent premixed combustion. Combust. Flame, 161, 3134.
  • Ma, T., Stein, T.O., Chakraborty, N., and Kempf, A.M. 2013. A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model., 17, 431.
  • Ma, T., Stein, T.O., Chakraborty, N., and Kempf, A.M. 2014a. A-posteriori testing of the flame surface density transport equation for LES. Combust. Theor. Model., 18, 32.
  • Poinsot, T., Haworth, D., and Bruneaux, G. 1993. Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame, 95, 118.
  • Poinsot, T., and Lele, S.K. 1992. Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys., 101, 104.
  • Poinsot, T., and Veynante, D. 2001. Theoretical and Numerical Combustion, R.T. Edwards, New York.
  • Reddy, H., and Abraham, J. 2012. Two-dimensional direct numerical simulation evaluation of the flame surface density model for flames developing from an ignition kernel in lean methane/air mixtures under engine conditions. Phys. Fluids, 24, 105108.
  • Rogallo, R.S. 1981. Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315. NASA Ames Research Center, Mountain View, CA.
  • Vosen, S.R., Greif, R., and Westbrook, C. 1984. Unsteady heat transfer in laminar quenching. Proc. Combust. Inst., 20, 76.
  • Wray, A.A. 1990. Minimal storage time advancement schemes for spectral methods. Unpublished report. NASA Ames Research Center, Mountain View, CA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.