380
Views
3
CrossRef citations to date
0
Altmetric
Articles

Exploring Computational Methods for Predicting Pollutant Emissions and Stability Performance of Premixed Reactions Stabilized by a Low Swirl Injector

ORCID Icon &
Pages 2115-2134 | Received 11 Apr 2016, Accepted 31 Jul 2017, Published online: 05 Sep 2017

References

  • Akbari, A., McDonell, V., and Samuelsen, S. 2013. Study of NOx from different natural gas and hydrogen fuel compositions in combustion applications. Presented at the 8th U.S. National Combustion Meeting, Salt Lake City, Utah.
  • Bakker, A., Oshinowo, L.M., and Marshall, E.M. 2000. The use of large eddy simulation to study stirred vessel hydrodynamics. Presented at the 10th European Conference on Mixing, Delft, the Netherlands, July 2–5.
  • Beerer, D. 2013. Combustion characteristics and performance of low-swirl injectors with natural gas and alternative fuels at elevated pressures and temperatures. PhD thesis. University of California, Irvine, CA.
  • Beerer, D., and Mcdonell, V. 2011. An elevated pressure and temperature combustion rig for lean premixed combustion studies. Presented at the 7th U.S. National Combustion Meeting, Atlanta, GA, March 20–23.
  • Beerer, D.J. McDonell, V., Therkelsen, P., and Cheng, R.K. 2012. Flashback, blowout, emissions and turbulent displacement flame speed measurements in a hydrogen and methane fired low-swirl injector at elevated pressures and temperatures. In Turbo Expo: Power for Land, Sea, and Air, Volume 2: Combustion, Fuels and Emissions, Parts A and B. ASME, Copenhagen, pp. 113–124.
  • Bell, J.B., Day, M.S., and Lijewski, M.J. 2013. Simulation of nitrogen emissions in a premixed hydrogen flame stabilized on a low swirl burner. Proc. Combust. Inst., 34(1), 1173–1182.
  • Benedetto, D., Pasini, S., Falcitelli, C., and Tognotti, L. 2000. NOx emission prediction from 3-D complete modelling to reactor network analysis. Combust. Sci. Technol., 153(1), 279–294.
  • Bouvet, N., Halter, F., Chauveau, C., and Yoon, Y. 2013. On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures. Int. J. Hydrogen Energy, 38(14), 5949–5960.
  • Bragg, S.L. 1953. Application of reaction rate theory to combustion chamber analysis. Aeronautical Research Council.
  • Cheng, R.K., Yegian, D.T., Miyasato, M.M., Samuelsen, G.S., Benson, C.E., Pellizzari, R., and Loftus, P. 2000. Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc. Combust. Inst., 28(1), 1305–1313.
  • Cheng, R.K., Littlejohn, D., Strakey, P.A., and Sidwell, T. 2009. Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions. Proc. Combust. Inst., 32(2), 3001–3009.
  • Cuoci, A., Frassoldati, A., Stagni, A., Faravelli, T., and Ranzi, E. 2013. Numerical modeling of NOx formation in turbulent flames using a kinetic post-processing technique. Energy Fuels, 27(2), 1104–1122. http://dx.doi.org/10.1021/ef3016987.
  • Davis, D.W., Therkelsen, P.L., Littlejohn, D., and Cheng, R.K. 2013. Effects of hydrogen on the thermo-acoustics coupling mechanisms of low-swirl injector flames in a model gas turbine combustor. Proc. Combust. Inst., 34(2), 3135–3143.
  • Day, M., Tachibana, S., Bell, John., Lijewski, M., Beckner, V., and Cheng, R. 2015. A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames. II. Hydrogen flames. Combust. Flame, 162(5), 2148–2165.
  • Dinkelacker, F., Manickam, B., and Muppala, S.P.R. 2011. Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame, 158(9), 1742–1749.
  • Emadi, M., Karkow, D., Salameh, T., Gohil, A., and Ratner, A. 2012. Flame structure changes resulting from hydrogen-enrichment and pressurization for low-swirl premixed methane–air flames. Int. J. Hydrogen Energy, 37(13), 10397–10404.
  • Fackler, B., Karalus, M., Novosselov, I., Kramlich, J., Malte, P., and Vijlee, S. 2015. NOx behavior for lean-premixed combustion of alternative gaseous fuels. In Proceedings of the ASME Turbo Expo 2015. ASME. J. Eng. Gas Turbines Power, 138(4), 041504-041504-11. doi:10.1115/1.4031478.
  • Fackler, K.B., Karalus, M., Novosselov, I., Kramlich, J., and Malte, P. 2011. Experimental and numerical study of NOx formation from the lean premixed combustion of CH4 mixed with CO2 and N2. J. Eng. Gas Turbines Power, 133(12), 121502. http://dx.doi.org/10.1115/1.4004127.
  • Falcitelli, M., Pasini, S., and Tognotti, L. 2002. Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach. Comput. Chem. Eng., 26(9), 1171–1183.
  • Fichet, V., Kanniche, M., Plion, P., and Gicquel, O. 2010. A reactor network model for predicting NOx emissions in gas turbines. Fuel, 89(9), 2202–2210.
  • Francisco Jr., R., Costa, M., Catapan, R., and Oliveira, A. 2013. Combustion of hydrogen rich gaseous fuels with low calorific value in a porous burner placed in a confined heated environment. Exp. Therm. Fluid Sci., 45, 102–109.
  • Grosshandler, W. 1993. RADCAL: A narrow-band model for radiation calculations in a combustion environment, NIST Technical Note 1402. NIST, Gaithersburg, MD.
  • Ji, C., and Wang, S. 2009. Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. Int. J. Hydrogen Energy, 34(18), 7823–7834.
  • Kang, Y., Wang, Q., Lu, X., Wan, H., Ji, X., Wang, H., Guo, Q., Yan, J., and Zhou, J. 2015. Experimental and numerical study on NOx and CO emission characteristics of dimethyl ether/air jet diffusion flame. Appl. Energy, 149, 204–224.
  • Kanniche, M. 2010. Coupling CFD with chemical reactor network for advanced NOx prediction in gas turbine. Clean Technol. Environ. Policy, 12(6), 661–670. http://dx.doi.org/10.1007/s10098-010-0293-5.
  • Karalus, M., Fackler, K., Novosselov, I. V., Kramlich, J. C., and Malte, P.C. 2012. Characterizing the mechanism of lean blowout for a recirculation-stabilized premixed hydrogen flame. In Proceedings of ASME Turbo Expo 2012, Copenhagen, Denmark; ASME, New York.
  • Khalil, A.E.E., Brooks, J.M., and Gupta, A.K. 2016. Impact of confinement on flowfield of swirl flow burners. Fuel, 184, 1–9.
  • Kim, H., eArghode, V., Linck, M., and Gupta, A. 2009. Hydrogen addition effects in a confined swirl-stabilized methane-air flame. Int. J. Hydrogen Energy, 34(2), 1054–1062.
  • Konnov, A. 1998. Detailed reaction mechanism for small hydrocarbons combustion, Release 0.4. Available at: http://www.tue.nl/universiteit/faculteiten/werktuigbouwkunde/onderzoek/research-groups/combustion-technology-oud/research/flamecodes/c-mech/.
  • Lee, D., Park, J., Jin, J., and Lee, M. 2011. A simulation for prediction of nitrogen oxide emissions in lean premixed combustor. J. Mech. Sci. Technol., 25(7), 1871–1878.
  • Lee, K., Kim, T. Cha, H., Song, S., and Chun, K.M. 2010. Generating efficiency and NOx emissions of a gas engine generator fueled with a biogas–hydrogen blend and using an exhaust gas recirculation system. Int. J. Hydrogen Energy, 35(11), 5723–5730.
  • Leonard, G., and Stegmaier, J. 1994. Development of an aeroderivative gas turbine dry low emissions combustion system. J. Eng. Gas Turbines Power, 116, 542–546.
  • Lezcano, C., Amell, A., and Cadadvid, F. 2013. Numerical calculation of the recirculation factor in flameless furnaces. Dyna, 80, 144–151.
  • Lieuwen, T., McDonell, V., Petersen, E., and Santavicca, D. 2008. Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J. Eng. Gas Turbines Power, 130(1), 11506.
  • Littlejohn, D., and Cheng, R.K. 2007. Fuel effects on a low-swirl injector for lean premixed gas turbines. Proc. Combust. Inst., 31(2), 3155–3162.
  • Littlejohn, D., Majeski, A. J., Tonse, S., Castaldini, C., and Cheng, R. K. 2002. Laboratory investigation of an ultralow NOx premixed combustion concept for industrial boilers. Proc. Combust. Inst., 29(1), 1115–1121.
  • Lyra, S., and Cant, R.S. 2013. Analysis of high pressure premixed flames using equivalent reactor networks for predicting NOx emissions. Fuel, 107, 261–268.
  • Magnussen, B.F., and Hjertager, B.H. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust., 16, 719–729.
  • Neumayer, M. 2013. RANS simulation of methane combustion in a low swirl burner. MSc thesis. Technische Universität München, Munich, Germany.
  • Nogenmyr, K.-J., Petersson, P., Bai, X., Nauert, A., Olofsson, J., Brackman, C., Seyfried, H., Zetterberg, J., Li, Z.S., Richter, M., Dreizler, A., Linne, M., and Aldén, M. 2007. Large eddy simulation and experiments of stratified lean premixed methane/air turbulent flames. Proc. Combust. Inst., 31(1), 1467–1475.
  • Novosselov, I. 2006. Chemical Reactor Networks for Combustion Systems Modeling, University of Washington, Seattle, WA.
  • Oefelein, J.C., Drozda, T.G., and Sankaran, V. 2006. Large eddy simulation of turbulence-chemistry interactions in reacting flows. J. Phys., 46, 16–27.
  • Park, J., Nguyen, T. H., Joung, D., Huh, K., and Lee, M. 2013. Prediction of NOx and CO emissions from an industrial lean-premixed gas turbine combustor using a chemical reactor network model. Energy Fuels, 27(3), 1643–1651. http://dx.doi.org/10.1021/ef301741t.
  • Petersen, E.L., Kalitan, D., Simmons, S., Bourque, G., Curran, H., and Simmie, J. 2007. Galway III—Methane/propane oxidation at high pressures: Experimental and detailed chemical kinetic modelling. Proc. Combust. Inst., 31, 447–454.
  • Pourramezan, M., Kahrom, M., and Passandideh-Fard, M. 2015. Numerical investigation on the lifetime decline of burners in a wall-fired dual-fuel utility boiler. Appl. Therm. Eng., 82, 141–151.
  • Richards, G., McMillian, M., Gemmen, R., Rogers, W., and Cully, S. 2001. Issues for low-emission, fuel-flexible power systems. Prog. Energy Combust. Sci., 27(2), 141–169.
  • Rørtveit, G.J., Zepter, K., Skreiberg, Ø., Fossum, M., and Hustad, J. 2002. A comparison of low-NOx burners for combustion of methane and hydrogen mixtures. Proc. Combust. Inst., 29(1), 1123–1129.
  • Rutar, T., and Malte, P. 2002. NOx formation in high-pressure jet-stirred reactors with significance to lean-premixed combustion turbines. J. Eng. Gas Turbines Power, 124, 776–783.
  • Rutar, T., Malte, P.C., and Kramlich, J.C. 2000. Investigation of NOx and CO formation in lean-premixed, methane/air, high-intensity, confined flames at elevated pressures. Proc. Combust. Inst., 28(2), 2435–2441.
  • Sahraei, M.H., Yandon, R., Duchesne, M., Hughes, R., and Ricardez-Sandoval, L. 2015. Parametric analysis using a reactor network model for petroleum coke gasification. Energy Fuels, 29(11), 7681–7688. http://dx.doi.org/10.1021/acs.energyfuels.5b01731.
  • Schefer, R.W., Wicksall, D.M., and Agrawal, A.K. 2002. Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proc. Combust. Inst., 29(1), 843–851.
  • Smith, G.P., Golden D.M., Frenklach M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Thomas Bowman, C., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissianski, V.V., and Qin, Z. GRI-MECH 3.0. Available at: http://www.me.berkeley.edu/gri_mech/.
  • Spalding, D.B. 1971. Mixing and chemical reaction in steady confined turbulent flames. Symp. (Int.) Combust., 13(1), 649–657.
  • Stagni, A., Cuoci, A., Frassoldati, A., Faravelli, T., and Ranzi, E. 2014. A fully coupled, parallel approach for the post-processing of CFD data through reactor network analysis. Comput. Chem. Eng., 60, 197–212.
  • Taamallah, S., Vogiatzaki, K., Alzahrani, F., Mokheimer, E., Habib, M., and Ghoniem, A. 2015. Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. Appl. Energy, 154, 1020–1047.
  • Therkelsen, P.L., Portillo, J., Littlejohn, D., Martin, S., and Cheng, R. 2013. Self-induced unstable behaviors of CH4 and H2/CH4 flames in a model combustor with a low-swirl injector. Combust. Flame, 160(2), 307–321.
  • Vourliotakis, G., Skevis, G., and Founti, M.A. 2011. Assessment of the reactor network approach for integrated modelling of an SOFC system. Int. J. Hydrogen Energy, 36(10), 6112–6122.
  • Wang, H., You, X., Joshi, A., Davis, S., Laskin, A., Egolfopoulos, F., and Law, C.K. 2007. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. Available at: http://ignis.usc.edu/USC_Mech_II.htm.
  • Wang, H., Lei, F., Shao, W., Zhang, Z., Liu, Y., and Xiao, Y. 2016. Experimental and numerical studies of pressure effects on syngas combustor emissions. Appl. Therm. Eng., 102, 318–328.
  • Zheng, Y., Zhu, M., Martinez, D., and Jiang, X. 2013. Large-eddy simulation of mixing and combustion in a premixed swirling combustor with synthesis gases. Comput. Fluids, 88, 702–714.
  • Zimont, V., Polifke, W., Bettelini, M., and Weisenstein, W. 1998. An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure. Trans. ASME, 120, 526–532.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.