370
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Karlovitz Number on Flame Surface Wrinkling in Turbulent Lean Premixed Methane-Air Flames

&
Pages 363-392 | Received 10 May 2017, Accepted 09 Oct 2017, Published online: 13 Nov 2017

References

  • Baum, M., Poinsot, T.J., Haworth, D.C., and Darabiha, N. 1994. Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech., 281, 1.
  • Bell, J.B., Day, M.S., Grcar, J.F., and Lijewski, M.J. 2006. Active control for statistically stationary turbulent premixed flame simulations. Comm. App. Math. Comp. Sci., 1, 29.
  • Boger, M., Veynante, D., Boughanem, H., and Trouve, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst., 27, 917.
  • Candel, S.M., and Poinsot, T.J. 1990. Flame stretch and the balance equation for the flame area. Combust. Sci. Technol., 70, 1.
  • Candel, S.M., Veynante, D., Lacas, F., Maistret, E., Darabiha, N., and Poinsot, T.J. 1990. Coherent flamelet model: Applications and recent extensions. In Recent Advances in Combustion Modelling, World Scientific, Singapore, pp. 19–64.
  • Cant, R.S., Pope, S., and Bray, K.N.C. 1991. Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. Proc. Combust. Inst., 23, 809.
  • Carroll, P.L., and Blanquart, G. 2013. A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluid, 25, 105114.
  • Chakraborty, N., and Cant, R.S. 2004. Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration. Combust. Flame, 137, 129.
  • Chakraborty, N., Hawkes, E., Chen, J.H., and Cant, R.S. 2008. The effects of strain rate and curvature on surface density function transport in turbulent premixed methane-air and hydrogen-air flames: A comparative study. Combust. Flame, 154, 259.
  • Chakraborty, N., Klein, M., and Cant, R.S. 2007. Stretch rate effects in displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst., 31, 1385.
  • Chakraborty, N., and Swaminathan, N. 2006. Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluid, 19, 045103.
  • Charlette, F., Meneveau, C., and Veynante, D. 2002. A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame, 131, 159.
  • Chen, J.H., and Im, H.G. 1998. Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proc. Combust. Inst., 27, 819.
  • Choi, C.R., and Huh, K.Y. 1998. Development of a coherent flamelet model for a spark-ignited turbulent premixed flame in a closed vessel. Combust. Flame, 114, 336.
  • Clavin, P. 1985. Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci., 11, 1.
  • Creta, F., Lamioni, R., Lapenna, P.E., and Troiani, G. 2016. Interplay of Darrieus-Landau instabilities and weak turbulence in turbulent premixed flame propagation. Phys. Rev. E, 94, 053102.
  • Domingo, P., Vervisch, L., Payet, S., and Hauguel, R. 2005. DNS of a premixed turbulent V flame and LES of a ducted flame using FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame, 143, 566.
  • Echekki, T., and Chen, J.H. 1999. Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame, 118, 308.
  • Frenklach, M., Wang, H., Yu, C.L., Goldenberg, M., Bowman, C.T., Hanson, R.K., Davidson, D.F., Chang, E.J., Smith, G.P., Golden, D.M., Gardiner, W.C., and Lissianski, V. 1995. GRI-Mech. Available at: http://www.me.berkeley.edu/gri_mech/.
  • Giannakopoulos, G.K., Gatzoulis, A., Frouzakis, C.E., Matalon, M., and Tomboulides, A.G. 2015. Consistent definitions of flame displacement speed and Markstein length for premixed flame propagation. Combust. Flame, 162, 1249.
  • Giovangigli, V. 1999. Multicomponent Flow Modeling, Birkhӓuser, Boston, MA.
  • Han, I., and Huh, K.Y. 2008. Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame, 152, 194.
  • Han, I., and Huh, K.Y. 2009. Effects of the Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc. Combust. Inst., 32, 1419.
  • Hartung, G., Hult, J., Kaminski, C., Rogerson, J., and Swaminathan, N. 2008. Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluid, 20, 035110.
  • Hawkes, E., and Cant, R.S. 2000. A flame surface density approach to large-eddy simulation of premixed turbulent combustion. Proc. Combust. Inst., 28, 51.
  • Hawkes, E., and Cant, R.S. 2001. Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame, 126, 1617.
  • Haworth, D., Blint, R.J., Cuenot, B., and Poinsot, T.J. 2000. Numerical simulation of turbulent propane-air combustion with nonhomogeneous reactants. Combust. Flame, 121, 395.
  • Haworth, D., and Poinsot, T.J. 1992. Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech., 244, 405.
  • Kollmann, W., and Chen, J.H. 1998. Pocket formation and flame surface density equation. Proc. Combust. Inst., 27, 927.
  • Law, C.K. 2006. Combustion Physics, Cambridge University Press, Cambridge, UK.
  • Lele, S.K. 1992. Compact finite difference schemes with spectral-like resolution. J. Comp. Phys., 103, 16.
  • Lipatnikov, A.N., Chomiak, J., Sabelnikov, V.A., and Hasegawa, T. 2015. Unburned mixture fingers in the premixed turbulent flames. Proc. Combust. Inst., 35, 1401.
  • Matalon, M. 1983. On flame stretch. Combust. Sci. Technol., 31, 169.
  • Matalon, M., and Matkowsky, B. 1982. Flames as gasdynamic discontinuities. J. Fluid Mech., 124, 239.
  • Meneveau, C., and Poinsot, T.J. 1991. Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame, 86, 311.
  • Motheau, E., and Abraham, J. 2016. A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy. J. Comp. Phys., 313, 430.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Pope, S. 1988. The evolution of surfaces in turbulence. Int. J. Eng. Sci., 26, 445.
  • Renou, B., Boukhalfa, A., Puechberty, D., and Trinite, M. 1998. Effects of stretch on the local structure of freely propagating premixed low-turbulent flames with various Lewis numbers. Proc. Combust. Inst., 27, 841.
  • Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., and Veynante, D. 2007. Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst., 31, 3059.
  • Rosales, C., and Meneveau, C. 2005. Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties. Phys. Fluid, 17, 095106.
  • Rutland, C.J., and Trouve, A. 1993. Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame, 94, 41.
  • Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T.F., and Law, C.K. 2007. Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proc. Combust. Inst., 31, 1291.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Lissianski, V.V., and Qin, Z. 1999. GRI-Mech. Available at: http://www.me.berkeley.edu/gri_mech/.
  • Sponfeldner, T., Boxx, I., Beyrau, F., Hardalupas, Y., Meier, W., and Taylor, A. 2015. On the alignment of fluid-dynamic principal strain-rates with the 3D flamelet-normal in a premixed turbulent V-flame. Proc. Combust. Inst., 35, 1269.
  • Steinberg, A.M., Driscoll, J.F., and Swaminathan, J.F. 2012. Statistics and dynamics of turbulence-flame alignment in premixed combustion. Combust. Flame, 159, 2576.
  • Vervisch, L., Bidaux, E., Bray, K.N.C., and Kollmann, W. 1995. Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys. Fluids, 7, 2496.
  • Wang, Z., Magi, V., and Abraham, J. 2017a. Turbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions. Combust. Flame, 180, 53.
  • Wang, Z., Motheau, E., and Abraham, J. 2017b. Effects of equivalence ratio variations on turbulent flame speed in lean methane/air mixtures under lean-burn natural gas engine operating conditions. Proc. Combust. Inst., 36, 3423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.