122
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Forced thermal ignition of a polydisperse fuel spray

&
Pages 849-877 | Received 27 Aug 2017, Accepted 07 Dec 2017, Published online: 26 Feb 2018

References

  • Abramzon, B., and Sirignano, W.A. 1989. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Trans., 32 (9), 1605.
  • Aggarwal, S.K. 1988. Ignition and flame propagation in dilute polydisperse sprays – importance of D32 and D20. J. Propul. Power, 4 (1), 14–21.
  • Aggarwal, S.K., and Sirignano, W.A. 1984. Numerical modeling of one-dimensional enclosed homogeneous and heterogeneous deflagrations. Proc. Combust. Inst., 20, 1773.
  • Aggarwal, S.K., and Sirignano, W.A. 1986. Ignition of polydisperse sprays: importance of D20. Combust. Sci. Technol., 46 (3–6), 289.
  • Ballal, D.R., and Lefebvre, A.H. 1978. Ignition and flame x quenching of quiescent fuel mists. Proc. Roy. Soc. Series A., 364, 277.
  • Ballal, D.R., and Lefebvre, A.H. 1979. Ignition and flame quenching of flowing heterogeneous fuel-air mixtures. Combust. Flame, 35, 155–168.
  • Ballal, D.R., and Lefebvre, A.H. 1980. Weak extinction limits of turbulent heterogeneous fuel/air mixtures. J. Eng. Power, 102(2), 146–421.
  • Ballal, D.R., and Lefebvre, A.H. 1981. A general model of spark ignition for gaseous and liquid fuel-air mixtures. Proc. Combust. Inst., 18, 1737.
  • Berman, V.S., Riaztsev, I.S., and Shevtsova, V.M. 1980. Asymptotic analysis of the process of igniting a combustible gas mixture by thermal inhomogeneity. PMM U.S.S.R. (In English Translation), 44, 60.
  • Bykov, V., Goldfarb, I., Goldshtein, V., and Greenberg, J.B. 2002. Thermal explosion in a hot gas mixture with fuel droplets: A two reactant model. Combust. Theory Model., 6, 1.
  • Bykov, V., Goldfarb, I., Goldshtein, V., and Greenberg, J.B. 2007. Auto-ignition of a polydisperse fuel spray. Proc. Combust. Inst., 31, 2257.
  • Castela, M., Stepanyan, S., Fiorina, B., Coussement, A., Gicquel, O., Darabiha, N., and Laux, C.O. 2017. A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture. Proc. Combust. Inst., 36, 4095.
  • Filimonov, V.Y. 2013. Thermal modes of monomolecular exothermic reactions: two dimensional model. Combust. Flame, 160, 539–545.
  • Filimonov, V.Y. 2014. Thermal modes of bimolecular exothermic reactions: concentration limits of ignition. Combust. Flame, 161, 1172–1179.
  • Frank-Kamenetskii, D.A. 1939. The temperature distribution in a reaction vessel and the time-independent theory of thermal explosions. Zh. Fiz. Khim., 13, 738.
  • Frank-Kamenetskii, D.A. 1969. Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York, USA.
  • Goldfarb, I., Goldshtein, V., Greenberg, J.B., and Kuzmenko, G. 2000. Thermal explosion in a droplet-gas cloud. Combust. Theory Model., 4, 289.
  • Goldfarb, I., Goldshtein, V., Kuzmenko, G., and Greenberg, J.B. 1998. On thermal explosion of a cool spray in hot gas. Proc. Combust. Inst., 27, 2367.
  • Greenberg, J.B. 2002. Stability boundaries of laminar premixed poydisperse spray flames. Atomization Sprays, 12 (1–3), 123–144.
  • Greenberg, J.B., Silverman, I., and Tambour, Y. 1993. On the origins of spray sectional conservation equations. Combust. Flame, 93, 90–96.
  • Han, W., and Chen, Z. 2015. Effects of finite-rate droplet evaporation on the ignition and propagation of premixed spherical spray flame. Combust. Flame, 162, 2128–2139.
  • Imaoka, R., and Sirignano, W.A. 2004. Vaporization and combustion in three-dimensional droplet arrays. Proc. Combust. Inst., 30, 1981.
  • Imaoka, R., and Sirignano, W.A. 2005a. A generalized analysis for liquid-fuel vaporization and burning. Int. J. Heat Mass Trans., 48, 4342.
  • Imaoka, R., and Sirignano, W.A. 2005b. Transient vaporization and burning in dense droplet sprays. Int. J. Heat Mass Trans., 48, 4354.
  • Kapila, A.K. 1981. Evolution of deflagration in a cold combustible subjected to a uniform energy flux. Int. J. Eng. Sci., 19, 495.
  • Kats, G., and Greenberg, J.B. 2016a. Analysis of the ignition of a combustible fuel spray-oxidant mixture, in AIAA Scitech Forum 2016. AIAA Paper 2016-1029, San Diego, USA, January 4-8 2016.
  • Kats, G., and Greenberg, J.B. 2016b. Spray ignition by a heated slab, ILASS – Europe 2016. 27th Annual Conference on Liquid Atomization and Spray Systems, Brighton, UK, September 4-7 2016.
  • Kats, G., and Greenberg, J.B. 2016c. On laminar rich premixed polydisperse spray flame propagation with heat loss. J. Combust., Article ID 1069873, 2016, doi:10.1155/2016/1069873
  • Kravchik, T., Sher, E., and Heywood, J.B. 1995. From spark ignition to flame initiation. Combust. Sci. Technol., 108, 1.
  • Labowsky, M. 1980. Calculation of the burning rates of interacting fuel droplets. Combust. Sci. Technol., 22, 217.
  • Lefebvre, A.H. 1989. Atomization and Sprays, Taylor and Francis, USA.
  • Lefkowitz, J.K. 2016. Plasma assisted combustion: fundamental studies and engine applications. PhD dissertation. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, USA.
  • Linan, A. 1985. Theory of droplet vaporization and combustion. In Borghi, R., Clavin, P., Linan, A., Pelce, P., and Sivashinsky, G.I. editors, Modelisation Des Phenomenes De Combustion, CEA-EDF INRIA 59, Editions Eyrolles, Paris, pp. 73–103.
  • Linan, A., and Williams, F.A. 1971. Theory of ignition of a reactive solid by constant energy flux. Combust. Sci. Technol., 3, 91.
  • Mugele, R.A., and Evans, H.D. 1951. Droplet size distribution in sprays. Ind. Eng. Chem., 43 (6), 1317–1324.
  • Neophytou, A. 2010. Spark ignition and flame propagation. PhD dissertation. University of Cambridge, UK.
  • Neophytou, A., Mastorakos, E., and Cant, R.S. 2011. Complex chemistry simulations of spark ignition in turbulent sprays. Proc. Combust. Inst., 33, 2135.
  • Nicoli, C., Haldenwang, P., and Suard, S. 2005. Analysis of pulsating spray flames propagating in lean two-phase mixtures with unity Lewis number. Combust. Flame, 143, 299–312.
  • Olmstead, W.E. 1983. Ignition of a combustible half space. SIAM J. Appl. Math., 43 (1), 1–15.
  • Peters, J.E., and Mellor, A.M. 1980. An ignition model for quiescent fuel sprays. Combust. Flame, 38, 65–74.
  • Rao, K.V.L., and Lefebvre, A.H. 1976. Minimum ignition energies in flowing kerosene-air mixtures. Combust. Flame, 27, 1–20.
  • Sanchez, A.L., Urzy, J., and Linan, A. 2015. The role of separation of scales in the description of spray combustion. Proc. Combust. Inst., 35, 1549.
  • Semenov, N.N. 1935. Chemical Kinetics and Chain Reactions, Oxford University Press, London, UK.
  • Sher, E., Ben-Ya’ish, J., and Kravchik, T. 1992. On the birth of spark channels. Combust. Flame, 89, 186–194.
  • Shouman, A.R. 2006. A review of one aspect of the thermal-explosion theory. J. Eng. Math., 56, 179–184.
  • Silverman, I., and Sirignano, W.A. 1994. Multi-droplet interaction effects in dense sprays. Int. J. Multiphase Flow, 20 (1), 99–116.
  • Sirignano, W.A. 1999. Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press, U.S.A.
  • Stull, D.R., and Prophet, H. 1971. JANAF Thermochemcial Tables, 2nd, NSRDS-NBS 37., National Bureau of Standards, Washington, DC, 20234.
  • Subba Rao, H.S., and Lefebvre, A.H. 1973. Ignition of kerosene fuel sprays in a flowing air stream. Combust. Sci. Technol., 8, 95.
  • Vargaftik, N.B. 1975. Tables on the Thermophysical Properties of Liquids and Gases, 2nd, Halsted Press, Division of John Wiley & Sons, Inc., New York.
  • Weinberg, N., and Greenberg, J.B. 2014. Linear stability analysis of laminar premixed fuel rich double-spray flames. Int. J. Spray Combust. Dyn., 6 (1), 87.
  • Williams, F.A. 1985. Combustion Theory, Addison Wesley, New York.
  • Zhu, M., and Rogg, B. 1996. Modelling and simulation of sprays in laminar flames. Meccanica, 31 (2), 177–193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.