213
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Micro-heterogeneous regimes for gasless combustion of composite materials

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 893-908 | Received 08 Apr 2017, Accepted 11 Dec 2017, Published online: 26 Feb 2018

References

  • Dreizen, E.L. 2009. Metal-based reactive nanomaterials. Prog. Energy Combust. Sci., 35, 141–167.
  • Dubois, S., Vrel, D., Cochepin, B., Karnatak, N., and Heian, E.M. 2004. Recent developments in self-propagating high-temperature synthesis of TiC. Recent Res. Develop. Phys., 5, 569–605.
  • E112-13. 2013. Standard test methods for determining average grain size. ASTM International, West Conshohocken, PA. doi:10.1520/E0112
  • Floriano, R., Leiva, D.R., Deledda, S., Hauback, B.C., and Botta, W.J. 2014. MgH2-based nanocomposites prepared by short time high energy ball milling followed by cold rolling: A new processing route. Int. J. Hydrogen Energy, 39, 4404–4413.
  • Grigoryan, H.E., Rogachev, A.S., and Sytschev, A.E. 1997. Gasless combustion in the Ti-C-Si system. Int. J. Self-Propagat. High-Temp. Synth., 6, 29–39.
  • Hwang, S., Mukasyan, A.S., Rogachev, A.S., and Varma, A. 1997. Combustion wave microstructure in gas-solid reactive systems: Experiment and theory. Comb. Sci. Tech., 123, 165–184.
  • Hwang, S., Mukasyan, A.S., and Varma, A. 1998. Mechanisms of combustion wave propagation in heterogeneous reaction systems. Combust. Flame, 115, 354–363.
  • Khaikin, B.I., and Merzhanov, A.G. 1966. Theory of thermal propagation of a chemical reaction front. Comb. Explos. Shock Waves, 2 (3), 22–27.
  • Korchagin, M., and Dudina, D. 2007. Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites. Comb. Expl. Shock Waves, 43, 176–187.
  • Maglia, F., Anselmi-Tamburini, U., Deidda, C., Delogu, F., Cocco, G., and Munir, Z.A. 2004. Role of mechanical activation in SHS synthesis of TiC. J. Mater. Sci., 39, 5227–5230.
  • Mallard, E., and Le Chatelier, H.L. 1883. Thermal model for flame propagation. Ann. Des. Mines, 4 (208), 274–381.
  • Manai, G., Delogu, F., Schiffini, L., and Cocco, G. 2004. Mechanically induced self-propagating combustions: Experimental findings and numerical simulation results. J. Mater. Sci., 39, 5319–5324.
  • Manukyan, K.V., Lin, Y.C., Rouvimov, S., McGinn, P.J., and Mukasyan, A.S. 2013. Microstructure-reactivity relationship of Ti+ C reactive nanomaterials. J. App. Phys., 113, 024302–024302-10.
  • Manukyan, K.V., Mason, B.A., Groven, L.J., Lin, Y.-C., Cherukara, M., Son, S.F., Strachan, A., and Mukasyan, A.S. 2012. Tailored reactivity of Ni+ Al nanocomposites: microstructural correlations. J. Phys. Chem. C, 116, 21027–21038.
  • Merzhanov, A.G., and Khaikin, B.I. 1988. Theory of combustion waves in homogeneous media. Prog. Energy Combust. Sci., 14, 1–98.
  • Merzhanov, A.G., Ozerkovskaya, N.I., and Shkadinskii, K.G. 1999. Dynamics of thermal explosion in the post-induction period. Combust. Explos. Shock Waves, 35, 660–665.
  • Mukasyan, A.S., and Rogachev, A.S. 2008. Discrete reaction waves: Gasless combustion of solid powder mixtures. Prog. Energy Combust. Sci., 34, 377–416.
  • Mukasyan, A.S., Rogachev, A.S., and Varma, A. 1999. Mechanisms of reaction wave propagation during combustion synthesis of advanced materials. Chem. Eng. Sci., 54, 3357–3367.
  • Rogachev, A.S., Kochetov, N.A., Kurbatkina, V.V., Levashov, E.A., Grinchuk, P.S., Rabinovich, O.S., Sachkova, N.V., and Bernard, F. 2006. Microstructural aspects of gasless combustion of mechanically activated mixtures. I. High-speed micro-video-recording of the Ni-Al composition. Combust. Explos. Shock Waves, 42, 421–429.
  • Rogachev, A.S., and Merzhanov, A.G. 1999. Theory of relay-race propagation of a combustion wave in heterogeneous systems. Dokl. Akad. Nauk., 365, 788–791.
  • Rogachev, A.S., and Mukasyan, A.S. 2015. Experimental verification of discrete models for combustion of microheterogeneous compositions forming condensed combustion products. Combust. Explos. Shock Waves, 51, 53–62.
  • Rogachev, A.S., Vadchenko, S.G., Baras, F., Politano, O., Rouvimov, S., Sachkova, N.V., Grapes, M.D., Weihs, T.P., and Mukasyan, A.S. 2016. Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation. Combust. Flame, 166, 158–169.
  • Shafirovich, E., Mukasyan, A.S., Thiers, L., Varma, A., Legrand, B., and Chauveau, C. 2002. Ignition and combustion of Al particles clad by Ni. Combust. Sci. Technol., 174, 125–140.
  • Shoshin, Y.L., Goroshin, S.V., and Zolotko, A.N. 1987. Flame in a medium with discrete sources. Dokl. Akad. Nauk., 291, 162–166.
  • Shuck, C.E., Frazee, M., Gillman, A., Beason, M.T., Gunduz, I.E., Matous, K., Winarski, R., and Mukasyan, A.S. 2016a. X-ray nanotomography and focused-ion-beam sectioning for quantitative three-dimensional analysis of nanocomposites. J. Synchrotron Radiat., 23, 990–996.
  • Shuck, C.E., Manukyan, K.V., Rouvimov, S., Rogachev, A.S., and Mukasyan, A.S. 2016b. Solid-flame: experimental validation. Combust. Flame, 163, 487–493.
  • Shuck, C.E., and Mukasyan, A.S. 2017. Reactive Ni/Al Nanocomposites: Structural characteristics and activation energy. J. Phys. Chem. A, 121, 1175–1181.
  • Shuck, C.E., Pauls, J.M., and Mukasyan, A.S. 2016c. Ni/Al energetic nanocomposites and the solid flame phenomenon. J. Phys. Chem. C, 120, 27066–27078.
  • Sieracki, C., Sieracki, M., and Yentsch, C. 1998. An imaging-in-flow system for automated analysis of marine micro-plankton. Mar. Ecol. Prog. Ser, 168, 285–296.
  • Suryanarayana, C. 2001. Mechanical alloying and milling. Prog. Mater Sci., 46, 1–184.
  • Suryanarayana, C. 2011. Synthesis of nanocomposites by mechanical alloying. J. Alloys Compd., 509S, S229–S234.
  • Takacs, L. 2002. Self-sustaining reactions induced by ball milling. Prog. Mat. Sci., 47, 355–414.
  • Tang, F.-D., Higgins, A.J., and Goroshin, S. 2012. Propagation limits and velocity of reaction-diffusion fronts in a system of discrete random sources. Phys. Rev. E, 85, 036311.
  • Thiers, L., Mukasyan, A.S., and Varma, A. 2002. Thermal explosion in Ni-Al system: influence of reaction medium microstructure. Combust. Flame, 131, 198–209.
  • Umbrajkar, S., Seshadri, S., Schoenitz, M., Hoffmann, V.K., and Dreizin, E.L. 2008. Aluminum-rich Al-MoO3 nanocomposite powders prepared by arrested reactive milling. J. Propul. Power, 24, 192–198.
  • White, J.D.E., Reeves, R.V., Son, S.F., and Mukasyan, A.S. 2009. Thermal explosion in Al− Ni system: Influence of mechanical activation. J. Phys. Chem. A, 113, 13541–13547.
  • Zeldovich, Y.B., and Frank-Kamenetskii, D.A. 1938. On the theory of uniform flame propagation. Zh. Fiz. Khim., 12 (1), 100–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.