488
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Toward finite-rate chemistry large-eddy simulations of sooting swirl flames

, , &
Pages 1194-1217 | Received 10 May 2017, Accepted 18 Feb 2018, Published online: 21 Mar 2018

References

  • Arana, C.P., Pontoni, M., Sen, S., and Puri, I.K. 2004. Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames Combust. Flame., 138, 362–372.
  • Balthasar, M., and Frenklach, M. 2005. Detailed kinetic modeling of soot aggregate formation in laminar premixed flames Combust. Flame., 140, 130–145.
  • Bilger, R.W., Stårner, S.H., and Kee, R.J. 1990. On reduced mechanisms for methane-air combustion in nonpremixed flames Combust. Flame., 80, 135–149.
  • Blacha, T., 2012. Effiziente Rußmodellierung in laminaren und turbulenten Flammen unterschiedlicher Brennstoffe. Ph.D. thesis, Institute of Combustion Technology for Aerospace Engineering, Universität Stuttgart.
  • Blacha, T., Di Domenico, M., Gerlinger, P., and Aigner, M. 2012. Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot Combust. Flame., 159, 181–193.
  • Blacha, T., Di Domenico, M., Rachner, M., Gerlinger, P., and Aigner, M., 2011. Modeling of soot and NOx in a full scale turbine engine combustor with detailed chemistry. In: Proceedings of the ASME Turbo Expo 2011: Power for Land, Sea and Air. No. GT2011-45084.
  • Bolla, M., Farrace, D., Wright, Y.M., and Boulouchos, K. 2014. Modelling of soot formation in a heavy-duty diesel engine with conditional moment closure Fuel., 117, 309–325.
  • Boxx, I.G., Geigle, K.P., Carter, D.C., and Meier, W., 2016. Effects of air staging on the dynamics of an ethylene-fueled gas turbine model combustor at elevated pressure. In: 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics.
  • Chorin, A.J. 1968. Numerical solution of the Navier-Stokes equations Math. Comput. 22, 745–762.
  • Colin, O., Ducros, F., Veynante, D., and Poinsot, T. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion Phys. Fluids., 12, 1843–1863.
  • D’Anna, A., and Kent, J.H. 2008. A model of particulate and species formation applied to laminar, nonpremixed flames for three aliphatic-hydrocarbon fuels Combust. Flame., 152, 573–587.
  • Di Domenico, M., 2008. Numerical simulations of soot formation in turbulent flows. Ph.D. thesis, Institute of Combustion Technology for Aerospace Engineering Universität Stuttgart.
  • Di Domenico, M., Gerlinger, P., and Aigner, M. 2010. Development and validation of a new soot formation model for gas turbine combustor simulations Combust. Flame., 157, 246–258.
  • Donde, P., Raman, V., Mueller, M.E., and Pitsch, H., 2013. LES/PDF based modeling of soot-turbulence interactions in turbulent flames. Proceedings of the Combustion Institute 34, 1183–1192.
  • Dupoirieux, F., Bertier, N., Guin, C., Geigle, K.P., Eberle, C., and Gerlinger, P. 2016. Methodology for the numerical prediction of pollutant formation in gas turbine combustors and associated validation experiments Aerospace Lab. 11, 1–20.
  • Duwig, C., Nogenmyr, K.-J., Chan, C.-K., and Dunn, M.J., 2011. Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combustion Theory and Modelling 15 537–568.
  • Dworkin, S.B., Zhang, Q., Thomson, M.J., Slavinskaya, N.A., and Riedel, U. 2011. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame Combust. Flame., 158, 1682–1695.
  • Eaves, N.A., Veshkini, A., Riese, C., Zhang, Q., Dworkin, S.B., and Thomson, M.J. 2012. A numerical study of high pressure, laminar, sooting, ethane-air coflow diffusion flames Combust. Flame., 159, 3179–3190.
  • Eberle, C., Blacha, T., Gerlinger, P., and Aigner, M., 2014. Numerical simulations of soot and NOx distributions in a full scale aero-engine combustor at two different flight altitudes. In: Proceedings of the 52nd AIAA Aerospace Sciences Meeting. No. AIAA 2014-0132.
  • Eberle, C., Gerlinger, P., and Aigner, M. 2017. A sectional PAH model with reversible PAH chemistry for CFD soot simulations Combust. Flame., 179, 63–73.
  • Eberle, C., Gerlinger, P., Geigle, K.P., and Aigner, M. 2015. Numerical investigation of transient soot evolution processes in an aero-engine model combustor Combustion Sci. Technol. 187, 1841–1866.
  • Edwards, J.R., Boles, J.A., and Baurle, R.A. 2012. Large-eddy/reynolds-averaged Navier-Stokes simulation of a supersonic reacting wall jet Combust. Flame., 159, 1127–1138.
  • El-Asrag, H., and Menon, S. 2009. Large eddy simulation of soot formation in a turbulent non-premixed jet flame Combust. Flame., 156, 385–395.
  • Figura, L., and Gomez, A. 2014. Structure of incipiently sooting ethylene-nitrogen counterflow diffusion flames at high pressures Combust. Flame., 161, 1587–1603.
  • Fiolitakis, A., Ess, P.R., Gerlinger, P., and Aigner, M. 2014. Modeling of heat transfer and differential diffusion in transported PDF methods Combust. Flame., 161, 2107–2119.
  • Franzelli, B., Riber, E., Cuenot, B., and Ihme, M., 2015. Numerical modeling of soot production in aero-engine combustors using large eddy simulations. In: Proceedings of the ASME Turbo Expo 2015: Power for Land, Sea and Air. No. GT2015-43630.
  • Frenklach, M., and Harris, S.J. 1987. Aerosol dynamics modeling using the method of moments J. Colloid Interface Sci. 118, 252–261.
  • Frenklach, M., and Wang, H., 1994. Detailed mechanism and modeling of soot particle formation, Bockhorn, H. Ed. Soot Formation in Combustion. Springer Verlag, Berlin, Heidelberg.
  • Fulton, J.A., Edwards, J.R., Cutler, A., McDaniel, J., and Goyne, C. 2016. Turbulence/chemistry interactions in a ramp-stabilized supersonic hydrogen-air diffusion flame Combust. Flame., 174, 152–165.
  • Geigle, K.P., Hadef, R., and Meier, W. 2014. Soot formation and flame characterization of an aero-engine model combustor burning ethylene at elevated pressure J. Eng. Gas Turbines and Power., 136, 021505.
  • Geigle, K.P., Hadef, R., Stöhr, M., and Meier, W., 2017. Flow field characterization of pressurized sooting swirl flames and relation to soot distributions. Proceedings of the Combustion Institute 36, 3917–3924.
  • Geigle, K.P., Köhler, M., O’Loughlin, W., and Meier, W., 2015a. Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations. Proceedings of the Combustion Institute 35, 3373–3380.
  • Geigle, K.P., O’Loughlin, W., Hadef, R., and Meier, W., 2015b. Visualization of soot inception in turbulent pressurized flames by simultaneous measurement of laser-induced fluorescence of polycyclic aromatic hydrocarbons and laser-induced incandescence, and correlation to OH distributions. Applied Physics B, 119, 717–730.
  • Geigle, K.P., Schneider-Kühnle, Y., Tsurikov, M.S., Hadef, R., Lückerath, R., Krüger, V., Stricker, W., and Aigner, M., 2005. Investigation of laminar pressurized flames for soot model validation using SV-CARS and LII. Proceedings of the Combustion Institute 30, 1645–1653.
  • Geigle, K.P., Zerbs, J., Köhler, M., Stöhr, M., and Meier, W. 2011. Experimental analysis of soot formation and oxidation in a gas turbine model combustor using laser diagnostics J. Eng. Gas Turbines and Power., 133, 121503.
  • Gerlinger, P. 2003. Investigation of an assumed PDF approach for finite-rate chemistry Combustion Sci. Technol. 175, 841–872.
  • Gerlinger, P. 2017. Lagrangian transported MDF methods for compressible high speed flows J. Comput. Phys. 339, 68–95.
  • Gerlinger, P., Möbus, H., and Brüggemann, D. 2001. An implicit multigrid method for turbulent combustion J. Comput. Phys. 167, 247–276.
  • Gerlinger, P., Noll, B., and Aigner, M. 2005. Assumed PDF modeling and PDF structure investigation using finite-rate chemistry Prog. Computational Fluid Dyn. 5, 334–344.
  • Gicquel, L.Y.M., Staffelbach, G., and Poinsot, T. 2012. Large eddy simulation of gaseous flames in gas turbine combustion chambers Prog. Energy Combustion Sci. 38, 782–817.
  • Gu, D., Sun, Z., Dally, B.B., Medwell, P.R., Alwahabi, Z.T., and Nathan, G.J. 2017. Simultaneous measurements of gas temperature, soot volume fraction and primary particle diameter in a sooting lifted turbulent ethylene/air non-premixed flame Combust. Flame., 179, 33–50.
  • Hessel, R., Reitz, R., Musculus, M., O’Connor, J., and Flowers, D. 2014. A CFD study of post injection influences on soot formation and oxidation under diesel-like operating conditions SAE Int. J. Engines., 7, 694–713.
  • Hodzic, E., Alenius, E., Duwig, C., Szasz, R.S., and Fuchs, L. 2017. A large eddy simulation study of bluff body flame dynamics approaching blow-off Combustion Sci. Technol. 189, 1107–1137.
  • Ihme, M., and Pitsch, H. 2008. Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation Phys. Fluids., 20, 055110.
  • Ivanova, E., Noll, B., Griebel, P., Aigner, M., and Syed, K. 2012. Numerical simulations of turbulent mixing and autoignition of hydrogen fuel at reheat combustor operating conditions J. Eng. Gas Turbines and Power., 134, 041504.
  • Jensen, E.J., and Toon, O.B. 1997. The potential impact of soot particles from aircraft exhaust on cirrus clouds Geophys. Res. Lett. 24, 249–252.
  • Kärcher, B. ed., 2008. Particles and Cirrus Clouds. Tech. rep., German Aerospace Center. DLR Institute for Atmospheric Physics, Oberpfaffenhofen.
  • Kazakov, A., Wang, H., and Frenklach, M. 1995. Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar Combust. Flame., 100, 111–120.
  • Köhler, M., Geigle, K.P., Blacha, T., Gerlinger, P., and Meier, W. 2012. Experimental characterization and numerical simulation of a sooting lifted turbulent jet diffusion flame Combust. Flame., 159, 2620–2635.
  • Koo, H., Hassanaly, M., Raman, V., Mueller, M.E., and Geigle, K.P. 2016. Large-eddy simulation of soot formation in a model gas turbine combustor J. Eng. Gas Turbines and Power., 139, 031503.
  • Kronenburg, A., Bilger, R.W., and Kent, J.H. 2000. Modeling soot formation in turbulent methane air jet diffusion flames Combust. Flame., 121, 24–40.
  • Lecocq, G., Poitou, D., Hernández, I., Duchaine, F., Riber, E., and Cuenot, B. 2014. A methodology for soot prediciton including thermal radiation in complex industrial burners Flow, Turbulence and Combustion., 92, 947–970.
  • Leung, K.M., Lindstedt, R.P., and Jones, W.P. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames Combust. Flame., 87, 289–305.
  • Lindstedt, R.P., and Waldheim, B.B.O., 2013. Modeling of soot particle size distributions in premixed stagnation flow flames. Proceedings of the Combustion Institute 34, 1861–1868.
  • Lourier, M., Eberle, C., Noll, B., and Aigner, M., 2015. Influence of turbulence-chemistry interaction modeling on the structure and the stability of a swirl-stabilized flame. In: Proceedings of the ASME Turbo Expo 2015: Power for Land, Sea and Air. No. GT2015-43174.
  • McEnally, C.S., and Pfefferle, L.D. 2000. Experimental study of nonfuel hydrocarbons and soot in coflowing partially premixed ethylene air flames Combust. Flame., 121, 575–592.
  • Menter, F.R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications Aiaa J. 32, 1598–1605.
  • Morgan, N., Kraft, M., Balthasar, M., Wong, D., Frenklach, M., and Mitchell, P., 2007. Numerical simulations of soot aggregation in premixed laminar flames. Proceedings of the Combustion Institute 31, 693–700.
  • Mosbach, S., Celnik, M.S., Raj, A., Kraft, M., Zhang, H.R., Kubo, S., and Kim, K. 2009. Towards a detailed soot model for internal combustion engines Combust. Flame., 156, 1156–1165.
  • Mueller, M.E., Blanquart, G., and Pitsch, H. 2009. Hybrid method of moments for modeling soot formation and growth Combust. Flame., 156, 1143–1155.
  • Mueller, M.E., and Pitsch, H. 2011. Large eddy simulation subfilter modeling of soot-turbulence interactions Phys. Fluids., 23, 115104.
  • Mueller, M.E., and Pitsch, H. 2012. LES model for sooting turbulent nonpremixed flames Combust. Flame., 159, 2166–2180.
  • Mueller, M.E., and Pitsch, H. 2013. Large eddy simulation of soot evolution in an aircraft combustor Phys. Fluids., 25, 110812.
  • Nakamura, M., Koda, S., and Akita, K., 1982. Sooting behavior and radiation in methanol/benzene/air diffusion flames. Proceedings of the Combustion Institute 19, 1395–1401.
  • Nicoud, F., and Ducros, F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor Flow, Turbulence and Combustion., 62, 183–200.
  • Paul, E.L., Atiemo-Obeng, V.A., and Kresta, S.M. 2004. Handbook of Industrial Mixing: Science and Practice. John Wiley & Sons, Hoboken, New jersey.
  • Petzold, A., Ström, J., Ohlsson, S., and Schröder, F.P. 1998. Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails Atmospheric. Res. 49, 21–34.
  • Petzold, A., Ström, J., Schröder, F.P., and Kärcher, B. 1999. Carbonaceous aerosol in jet engine exhaust: emission characteristics and implications for heterogeneous chemical reactions Atmos. Environ. 33, 2689–2698.
  • Pitsch, H. 2006. Large-eddy simulation of turbulent combustion Annu. Rev. Fuid Mechanics., 38, 453–4582.
  • Pope, C.J., and Howard, J.B. 1997. Simultaneous particle and molecule modeling (SPAMM): An approach for combining sectional aerosol equations and elementary gas-phase reactions Aerosol Sci. Technol. 27, 73–94.
  • Pope, S.B., 2013. Small scales, many species and the manifold challenges of turbulent combustion. Proceedings of the Combustion Institute 34, 1–31.
  • Potturi, A.S., and Edwards, J.R. 2015. Large-eddy/Reynolds averaged Navier-Stokes simulation of cavity-stabilized ethylene combustion Combust. Flame., 162, 1176–1192.
  • Qamar, N.H., Alwahabi, Z.T., Chan, Q.N., Nathan, G.J., Roekaerts, D., and King, K.D. 2009. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas Combust. Flame., 156, 1339–1347.
  • Ranjan, R., Muralidharan, B., Nagaoka, Y., and Menon, S. 2016. Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames Combustion Sci. Technol.188, 1496–1537.
  • Richter, H., Granata, S., Green, W.H., and Howard, J.B., 2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of the Combustion Institute 30, 1397–1405.
  • Saffaripour, M., Zabeti, P., Dworkin, S.B., Zhang, Q., Guo, H., Liu, F., Smallwood, G.J., and Thomson, M.J., 2011. A numerical and experimental study of a laminar sooting coflow Jet-A1 diffusion flame. Proceedings of the Combustion Institute 33, 601–608.
  • Santoro, R.J., Yeh, T.T., Horvath, J.J., and Semerjian, H.G. 1987. The transport and growth of soot particles in laminar diffusion flames Combustion Sci. Technol. 53, 89–115.
  • Shahriari, B., and Thomson, M.J.S.D., 1995. Development and validation of a partially coupled soot model for turbulent kerosene combustion in view of application to gas turbines. In: Proceedings of the ASME Turbo Expo 2015. No. GT2015-43063.
  • Slavinskaya, N.A., and Frank, P. 2009. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames Combust. Flame., 156, 1705–1722.
  • Slavinskaya, N.A., and Haidn, O.J., 2008. Reduced chemical model for high pressure methane combustion with PAH formation. In: Proceedings of the 46th AIAA Aerospace Sciences Meeting. No. AIAA 2008-1012.
  • Smooke, M.D., Long, M.B., Connelly, B.C., Colket, M.B., and Hall, R.J. 2005. Soot formation in laminar diffusion flames Combust. Flame., 143, 613–628.
  • Spalart, P.R. 2000. Strategies for turbulence modelling and simulations Int. J. Heat Fluid Flow., 21, 252–263.
  • Spalding, D.B., 1971. Mixing and chemical reaction in steady confined turbulent flames. Proceedings of the Combustion Institute 13, 649–657.
  • Stöhr, M., Arndt, C.M., and Meier, W., 2015. Transient effects of fuel-air mixing in a partially-premixed turbulent swirl flame. Proceedings of the Combustion Institute 35, 3327–3335.
  • Strakey, P.A., and Eggenspieler, G. 2010. Development and validation of a thickened flame modeling approach for large eddy simulation of premixed combustion J. Eng. Gas Turbines and Power., 132, 071501.
  • Tsurikov, M.S., Geigle, K.P., Krüger, V., Schneider-Kühnle, Y., Stricker, W., Lückerath, R., Hadef, R., and Aigner, M. 2005. Laser-based investigation of soot formation in laminar premixed flames at atmospheric and elevated pressures Combustion Sci. Technol. 177, 1835–1862.
  • Vicquelin, R., Fiorina, B., Payet, S., Darabiha, N., and Gicquel, O., 2011. Coupling tabulated chemistry with compressible CFD solvers. Proceedings of the Combustion Institute 33, 1481–1488.
  • Wick, A., Priesack, F., and Pitsch, H., 2017. Large-eddy simulation and detailed modeling of soot evolution in a model aero engine combustor. In: Proceedings of the ASME Turbo Expo 2017: Power for Land, Sea and Air. No. GT2017-63293.
  • Xu, F., Sunderland, P.B., and Faeth, G.M. 1997. Soot formation in laminar premixed ethylene/air flames at atmospheric pressure Combust. Flame., 108, 471–493.
  • Zamuner, B., and Dupoirieux, F. 2000. Numerical simulation of soot formation in a turbulent flame with a Monte-Carlo PDF approach and detailed chemistry Combustion Sci. Technol. 158, 407–438.
  • Zhang, L., Choi, J.Y., and Yang, V. 2015. Supersonic combustion and flame stabilization of coflow ethylene and air with splitter plate J. Propulsion and Power., 31, 1242–1255.
  • Zhang, M., Hu, Z., and Liu, P., 2010. Large-eddy simulation of kerosene spray combustion in a model scramjet chamber. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering 224, 940–960.
  • Zhao, B., Yang, Z., Li, Z., Johnsten, M.V., and Wang, H., 2005. Particle size distribution function of incipient soot in laminar premixed ethylene flames: Effect of flame temperature. Proceedings of the Combustion Institute 30, 1441–1448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.