191
Views
3
CrossRef citations to date
0
Altmetric
Articles

Shock-tube study of the formation of iron, carbon, and iron–carbon binary nanoparticles: experiment and detailed kinetic simulations

, , , , , , , , , , & show all
Pages 243-262 | Received 01 Dec 2017, Accepted 10 Mar 2018, Published online: 27 Mar 2018

References

  • Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Kolbanovskii, Y.A., Smirnov, V.N., and Tereza, A.M. 2015a. Soot formation during the pyrolysis and oxidation of acetylene and ethylene in shock waves. Kinet. Catal., 56(1), 12.
  • Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Zhiltsova, I.V., Kolbanovskii, Y.A., Smirnov, V.N., and Tereza, A.M. 2016. Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves. Kinet. Catal., 57(5), 557.
  • Agafonov, G.L., Lyubimov, A.V., Smirnov, V.N., Sokolova, I.L., Tereza, A.M., and Vlasov, P.A. 2015b. Influence of various promotors and inhibitors of soot formation on the production of soot nuclei. Physics Procedia, 72, 79.
  • Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A. 2011. Shock tube and modeling study of soot formation during the pyrolysis and oxidation of a number of aliphatic and aromatic hydrocarbons. Proc. Combust. Instit., 33, 625.
  • Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A. 2012. Effect of iron pentacarbonyl on soot formation behind shock waves. Combust. Sci. Technol., 184(10–11), 1838.
  • Atkinson, J.D., Fortunato, M.E., Dastgheib, S.A., Rostam-Abadi, M., Rood, M.J., and Suslick, K.S. 2011. Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis. Carbon, 49, 587.
  • Bérubé, K.A., Jones, T.P., Williamson, B.J., Winters, C., Morgan, A.J., and Richards, R.J. 1999. Physicochemical characterization of diesel exhaust particles: factors for assessing biological activity. Atmos. Environ., 33, 1599–1614.
  • Bonczyk, P.A. 1991. Effect of ferrocene on soot in a prevaporized iso-octane air diffusion flame. Combust. Flame, 87, 233–244.
  • Bystrzejewski, M., Pyrzyńska, K., Huczko, A., and Lange, H. 2009. Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon, 47(4), 1201.
  • Cai, W., and Wan, J. 2007. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Coll. Inter. Sci., 305, 366.
  • Charles, S.W., and Popplewell, J. 1982. Properties and applications of magnetic liquids. Endeavour, 6, 153.
  • Chourpa, I., Douziech, E.L., Ngaboni-Okassa, L., Fouquenet, J.F., Cohen, J.S., Souce, M., Marchais, H., and Dubois, P. 2005. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst, 130, 1395.
  • David, B., Pizúrová, N., Schneeweiss, O., Bezdijcka, P., Morjan, I., and Alexandrescu, R. 2004. Preparation of iron−graphite core–shell structured nanoparticles. J. Alloys Compounds, 378, 112.
  • Deuflhard, P., and Wulkow, M. 1989. Computational treatment of polyreaction kinetics by orthogonal polynomials of a discrete variable. Impact Comput. Sci. Eng., 1, 269.
  • Ermakov, A.E., Uimin, M.A., Mysik, A.A., Gaviko, V.S., Lokteva, E.S., Kachevskii, S.A., Turakulova, A.O., and Lunin, V.V. 2009. The synthesis, structure, and properties of carbon-containing nanocomposites based on nickel, palladium, and iron. Rus. J. Phys. Chem. A, 83(7), 1187.
  • Fan, N., Ma, X., Ju, Z., and Li, J. 2008. Formation, characterization and magnetic properties of carbon-encapsulated iron carbide nanoparticles. Materials Res. Bulletin, 43, 1549.
  • Feldheim, D.L., and Foss, C.A., Jr. 2002. Overview, pp. 1–15. Feldheim, D.L., and Foss, C.A., Jr. Eds., Metal Nanoparticles: Synthesis, Characterization, and Applications, Marcel Dekker, New York.
  • Giesen, A., Kowalik, A., and Roth, P. 2004. Iron-atom condensation interpreted by a kinetic model and a nucleation model approach. Phase Transit., 77(1–2), 115.
  • Gurentsov, E.V., and Eremin, A.V. 2015. Synthesis of metal-carbon nanoparticles in pulsed UV-photolysis of Fe(CO)5-CCl4 mixtures at room temperature. Tech. Phys. Lett., 41(6), 547.
  • Gurentsov, E.V., Eremin, A.V., Roth, P., and Starke, R. 2005. Formation of iron–carbon nanoparticles behind shock waves. Kinet. Catal., 46(3), 309.
  • He, Z., Maurice, J.L., Gohier, A., Lee, C.S., Pribat, D., and Cojocaru, C.S. 2011. Iron catalysts for the growth of carbon nanofibers: Fe, Fe3C or both? Chem. Mater., 23, 5379.
  • Hermann, I.K., Grass, R.N., and Stark, W.J. 2009. High-strength metal nanomagnets for diagnostics and medicine: carbon shells allow long-term stability and reliable linker chemistry. Nanomedicine, 4, 787.
  • Hirasawa, T., Sung, C.-J., Yang, Z., Joshi, A., and Wang, H. 2004. Effect of ferrocene addition on sooting limits in laminar premixed ethylene-oxygen-argon flames. Combust. Flame, 139, 288–299.
  • Jain, T.K., Morales, M.A., Sahoo, S.K., Leslie-Pelecky, D.L., and Labhasetwar, V. 2005. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm., 2, 194.
  • Kohler, N., Sun, C., Wang, J., and Zhang, M.Q. 2005. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir, 21, 8858.
  • Lee, K., Kim, M., and Kim, H.J. 2010. Catalytic nanoparticles being facet-controlled. Mater. Chem., 20, 3791.
  • Lee, S.J., Jeong, J.R., Shin, S.C., Kim, J.C., and Kim, J.D. 2004. Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. J. Magn. Magn. Mat., 282, 147.
  • Li, S.S., Chiu, C.C., Chang, R.W., Liou, Y.H., and Teng, M.H. 2016. Synthesis and properties of modified graphite encapsulated iron metal nanoparticles. Diam. Relat. Mater., 63, 153.
  • Liu, Q., Cao, B., Feng, C., Zhang, W., Zhu, S., and Zhang, D. 2012. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Composites Sci. Tech., 72, 1632.
  • Luo, N., Li, X., Wang, X., Yan, H., Mo, F., and Sun, W. 2009. Preparation and magnetic behavior of carbon-encapsulated iron nanoparticles by detonation method. Composites Sci. Tech., 69, 2554.
  • Luo, N., Li, X., Wang, X., Yan, H., Zhang, C., and Wang, H. 2010. Synthesis and characterization of carbon-encapsulated iron−iron carbide nanoparticles by a detonation method. Carbon, 48, 3858.
  • Mikheeva, E.Y. 2013. Experimental study of thermal effects and soot particle formation during shock wave pyrolysis of hydrocarbons. PhD Thesis. Joint Institute of High Temperatures, Russian Academy of Sciences, Moscow.
  • Miller, M.M., Prinz, G.A., Cheng, S.F., and Bounnak, S. 2002. Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Appl. Phys. Lett., 81, 2211.
  • Olariu, C.I., Yiu, H.H.P., and Bouffier, L. 2013. Inorganic–organic hybrid nanoparticles for medical applications, pp. 85–134. Öchsner, A., and Shokuhfar, A. Eds., New Frontiers of Nanoparticles and Nanocomposite Materials. Novel Principles and Techniques, Springer-Verlag, Berlin, Heidelberg.
  • Park, J., Lee, E., Hwang, N.M., Kang, M., Kim, S.K., Hwang, S., Park, J.-G., Noh, H.-J., Kim, J.-Y., Park, J.-H., and Hyeon, T. 2005. One-nanometer scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed., 44, 2872.
  • Ritrievi, K.E., Longwell, J.P., and Sarofim, A.F. 1987. The effects of ferrocene addition on soot particle inception and growth in premixed ethylene flames. Combust. Flame, 70, 17–31.
  • Shi, C., Cui, L., Lin, K., Guo, Q., Zhang, F., Hu, F., Shah, S.A., Wang, X., Chen, X., and Cui, S. 2017. Preparation of n-doped composite shell encapsulated iron nanoparticles and their magnetic, adsorptive, and photocatalytic properties. J. Nanomaterials, 2017, ID 7868121, 15.
  • Smirnov, V.N. 2008. Thermal dissociation of the gas-phase hydrides and organometallic compounds and the reactions of their decomposition products. PhD Thesis, Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.
  • Starikovsky, A.Y., Thienel, T., Wagner, H.G., and Zaslonko, I.S. 1998. Soot formation in the pyrolysis of halogenated hydrocarbons. Part I, Binary mixtures of carbon tetrachloride with hydrogen and iron pentacarbonyl. Ber. Bunsen Ges. Phys. Chem., 102, 1815–1822.
  • Starke, R., Kock, B., and Roth, P. 2003. Nano-particle sizing by laser-induced-incandescence (LII) in a shock wave reactor. Shock Waves, 12, 351.
  • Stella, B., Arpicco, S., Peracchia, M.T., Desmaele, D., Hoebeke, J., Renoir, M., D’Angelo, J., Cattel, L., and Couvreur, P. 2000. Design of folic acid conjugated nanoparticles for drug targeting. J. Pharm. Sci., 89, 1452.
  • Sun, S., Murray, C.B., Weller, D., Folks, L., and Moser, A. 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287, 1989.
  • Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., and Li, G. 2004b. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 126, 173.
  • Sun, Y.K., Ma, M., Zhang, Y., and Gu, N. 2004a. Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf. A, 245, 15.
  • Tanke, D., Wagner, H.G., and Zaslonko, I.S. 1998. Mechanism of the action of iron-bearing additives on soot formation behind shock waves. Proc. Combust. Inst., 27, 1597–1604.
  • Tokoro, H., Fujii, S., Muto, S., and Nasu, S. 2006. Fe-Co and Fe-Ni magnetic fine particles encapsulated by graphite carbon. J. Appl. Phys., 99, 08Q512.
  • Tsurin, V.A., Yermakov, A.Y., Uimin, M.A., Mysik, A.A., Shchegoleva, N.N., Gaviko, V.S., and Maikov, V.V. 2014. Synthesis, structure, and properties of iron and nickel nanoparticles encapsulated into carbon. Phys. Solid State, 56(2), 287.
  • Tyagi, S., Verma, P., Baskey, H.B., Agarwala, R.C., Agarwala, V., and Shami, T.C. 2012. Microwave absorption study of carbon nanotubes dispersed hard−soft ferrite nanocomposite. Ceram. Int., 38, 4561.
  • Wallis, D.J., Browning, N.D., Megaridis, C.M., and Nellist, P.D. 1996. Analysis of nanometer sized pyrogenic particles in the scanning transmission electron microscope. J. Microsc., 184, 185–194.
  • Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst., 33, 41.
  • Weissleder, R., Bogdanov, A., Neuwelt, E.A., and Papisov, M. 1995. Long-circulating iron oxides for MR imaging. Adv. Drug Deliv. Rev., 16, 321.
  • Wen, J.Z., Goldsmith, C.F., Ashcraft, R.W., and Green, W.H. 2007. Detailed kinetic modeling of iron nanoparticle synthesis from the decomposition of Fe(CO)5. J. Phys. Chem. C., 111, 5677.
  • Wong-Ng, W., McMurdie, H.F., Hubbard, C.R., and Mighell, A.D. 2001. JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST). J. Res. Natl. Inst. Stand. Technol., 106, 1013.
  • Xu, Y., Mahmood, M., Li, Z., Dervishi, E., Trigwell, S., Zharov, V.P., Ali, N., Saini, V., Biris, A.R., Lupu, D., Boldor, D., and Biris, A.S. 2008. Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology, 19, 435102.
  • Yi, D.K., Lee, S.S., and Ying, J.Y. 2006. Synthesis and applications of magnetic nanocomposite catalysts. Chem. Mater., 18, 2459.
  • Yiu, H.H.P., Niu, H.J., Biermans, E., Van Tendeloo, G., and Rosseinsky, M.J. 2010. Designed multifunctional nanocomposites for biomedical applications. Adv. Funct. Mater., 20, 1599.
  • Zhang, L., Anderson, R.M., Crooks, R.M., and Henkelman, G. 2015. Correlating structure and function of metal nanoparticles for catalysis. Surf. Sci., 640, 65.
  • Zhao, D.L., Li, X., and Shen, Z.M. 2009. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloys Compd., 471, 457.
  • Zhao, M., and Song, H. 2010. Synthesis of carbon-encapsulated iron carbide−iron nanoparticles from phenolic-formaldehyde resin and ferric nitrate. Mater. Chem. Phys., 124, 861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.