220
Views
1
CrossRef citations to date
0
Altmetric
Articles

Probing the equivalence ratio in partially premixed flames by combining optical techniques and modeling results

, , , , , & show all
Pages 1442-1454 | Received 21 Sep 2017, Accepted 29 Jan 2018, Published online: 26 Mar 2018

References

  • Bak, M.S., Im, S., Mungal, M.G., and Cappelli, M.A. 2013. Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas. Combust. Flame, 160, 2396.
  • Ballester, J., and Garcia-Armingol, T. 2010. Diagnostic techniques for the monitoring and control of practical flames. Prog. Energy Combust. Sci., 36 (4), 375.
  • Böhm, H., Braun-Unkhoff, M., and Frank, P. 2003. Investigations on initial soot formation at high pressures. Progr. Comp. Fluid Dynam., 3, 145.
  • Cignoli, F., De Iuliis, S., Manta, V., and Zizak, G. 2001. Two-dimensional two-wavelength emission technique for soot diagnostics. Appl. Opt., 40 (30), 5370.
  • D’Anna, A., Sirignano, M., and Kent, J. 2010. A model of particle nucleation in premixed ethylene flames. Combust. Flame, 157 (11), 2106.
  • D’Anna, A., and Violi, A. 1998. A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Proc. Comb. Inst., 27 (1), 425.
  • Dasch, C.J. 1992. One-dimensional tomography: a comparison of Abel, onion peeling, and filtered backprojection methods. Appl. Opt., 31, 1146.
  • De Iuliis, S., Migliorini, F., Cignoli, F., and Zizak, G. 2006. Peak soot temperature in laser-induced incandescence measurements. Appl. Phys. B, 83 (3), 397.
  • De Iuliis, S., Migliorini, F., Cignoli, F., and Zizak, G. 2007. 2D soot volume fraction imaging in an ethylene diffusion flame by two-color laser-induced incandescence (2C-LII) technique and comparison with results from other optical diagnostics. Proc. Combust. Inst., 31 (1), 869.
  • Hardalupas, Y., and Orain, M. 2004. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescence emission from a flame. Combust. Flame, 139 (3), 188.
  • Ikeda, Y., Kojima, J., and Hashimoto, H. 2002. Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame. Proc. Combust. Inst., 29 (2), 1495.
  • Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F. 1999. CHEMKIN Collection, Release 3.5, Reaction Design, Inc., San Diego, CA.
  • Kiefer, J., Johannes, W.T., Zhongshan, L., Seeger, T., Alden, M., and Leipertz, A. 2012. Laser-induced breakdown flame thermometry. Combust. Flame, 159 (12), 3576.
  • Kiefer, J., Troger, J.W., Li, Z.S., and Alden, M. 2011. Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Appl. Phys. B, 103, 229.
  • Kojima, J., Ikeda, Y., and Nakajima, T. 2000. Spatially resolved measurements of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames. Proc. Combust. Inst., 28, 1757.
  • Kotzagianni, M., Yuan, R., Mastorakos, E., and Couris, S. 2016. Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme. Combust. Flame, 167, 72.
  • Lauer, M., and Sattelmayer, T. 2008. Heat release calculation in a turbulent swirl flame from laser and chemiluminescence measurements. 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July.
  • Majd, A.E., Arabanian, A.S., Massudi, R., and Nazeri, M. 2011. Spatially resolved laser-induced breakdown spectroscopy in methane-air diffusion flames. Appl. Spectr., 65 (1), 36.
  • Marinov, N.M., Pitz, W.J., Westbrook, C.K., Castaldi, M.J., and Senkan, S.M. 1996. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combust. Sci. Technol., 116–117 (1–6), 211.
  • McEnally, C.S., and Pfefferle, L.D. 1999. Experimental study of nonfuel hydrocarbon concentrations in coflowing partially premixed methane/air flames. Combust. Flame, 118 (4), 619.
  • Merotto, L., Dondè, R., and De Iuliis, S. 2015. LIBS and chemiluminescence measurements for fuel/oxidizer mixing monitoring. XXVIII Meeting of the Italian Section of the Combustion Institute, Lecce, Italy, September 20–23. ISBN: 978-88-88104-25-6.
  • Merotto, L., Sirignano, M., Commodo, M., D’Anna, A., Dondè, R., and De Iuliis, S. 2017. Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and LIBS technique. Energy Fuels, 31, 3227–3233. DOI: 10.1021/acs.energyfuels.6b03094.
  • Migliorini, F., Maffi, S., De Iuliis, S., and Zizak, G. 2014. Analysis of chemiluminescence measurements by grey-scale ICCD and colour digital cameras. Meas. Sci. Technol., 25, 55202.
  • Miller, J.A., and Melius, C.F. 1992. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame, 91 (1), 21.
  • Nori, V., and Seitzman, J. 2007. Chemiluminescence measurements and modeling in syngas, methane and jet-A fueled combustors. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January.
  • Nori, V., and Seitzman, J. 2008. Evaluation of chemiluminescence as a combustion diagnostic under varying operating conditions. AIAA Paper 953.
  • Panoutsos, C.S., Hardalupas, Y., and Taylor, A.M.K.P. 2009. Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane – air flames. Combust. Flame, 156 (2), 273.
  • Phuoc, T.X., and White, F.P. 2002. Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture. Fuel, 81, 1761.
  • Roby, R.J., Reaney, J.E., and Johnsson, E.L. 1998. Detection of Temperature and Equivalence Ratio in Turbulent Premixed Flames Using Chemiluminescence, Virginia Polytechnic Inst. and State Univ., Blacksburg, US.
  • Sirignano, M., and D’Anna, A. 2015. Further experimental and modelling evidences of soot fragmentation in flames. Proc. Combust. Inst., 35, 1779.
  • Sirignano, M., Kent, J., and D’Anna, A. 2010. Detailed modeling of size distribution functions and hydrogen content in combustion-formed particles. Combust. Flame, 157 (6), 1211.
  • Sirignano, M., Kent, J., and D’Anna, A. 2013. Modeling formation and oxidation of soot in nonpremixed flames. Energ. Fuel, 27 (4), 2303.
  • Smyth, K.C., Miller, J.H., Dorfman, R.C., Mallard, W.G., and Santoro, R.J. 1985. Soot inception in a methane/air diffusion flame as characterized by detailed species profiles. Combust. Flame, 62 (2), 157.
  • Stavropoulos, P., Michalakou, A., Skevis, G., and Couris, S. 2005a. Global and local equivalence ratio measurements in laminar premixed hydrocarbon-air flames using Laser Induced Breakdown Spectroscopy (LIBS). Proceedings of the European Combustion Meeting, Louvain-la-Neuve, Belgium 3-6 April 2005.
  • Stavropoulos, P., Michalakou, A., Skevis, G., and Couris, S. 2005b. Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS). Chem. Phys. Lett., 404, 309.
  • Stavropoulos, P., Michalakou, A., Skevis, G., and Couris, S. 2005c. Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames. Spectrochim. Acta B, 60 (7), 1092.
  • Tinaut, F.V., Reyes, M., Giménez, B., and Pastor, J.V. 2010. Measurements of OH* and CH* chemiluminescence in premixed flames in a constant volume combustion bomb under autoignition conditions. Energy Fuels, 25 (1), 119.
  • Tripathi, M.M., Srinivasan, K.K., Krishnan, S.R., Yueh, F.Y., and Singh, J.P. 2013. A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane–air flames. Fuel, 106, 318.
  • Zhengjie, S., Hardalupas, Y., and Taylor, A.M.K.P. 2016. Local equivalence ratio measurement in opposed jet flames of premixed and non-premixed methane-air using Laser-Induced Breakdown Spectroscopy. 18th Int. Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, July 4–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.