311
Views
6
CrossRef citations to date
0
Altmetric
Articles

Application of the Eulerian subgrid Probability Density Function method in the Large Eddy Simulation of a partially premixed swirl flame

, &
Pages 137-150 | Received 21 Sep 2017, Accepted 23 Jan 2018, Published online: 04 Apr 2018

References

  • Barlow, R.S., Karpetis, A.N., Frank, J.H., and Chen, J.Y. 2001. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame. 127(3), 2102–2118.
  • Brauner, T., Jones, W.P., and Marquis, A.J. 2016. LES of the Cambridge stratified swirl burner using a sub-grid pdf approach. Flow, Turbul. Combust. 96(4), 965–985.
  • Bulat, G., Jones, W.P., and Marquis, A.J. 2013. Large eddy simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method. Proc. Combust. Inst. 34(2), 3155–3164.
  • Bulat, G., Jones, W.P., and Marquis, A.J. 2014. NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method. Combust. Flame. 161(7), 1804–1825.
  • Caux-Brisebois, V., Steinberg, A.M., Arndt, C.M., and Meier, W. 2014. Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model combustor. Combust. Flame. 161(12), 3166–3180.
  • Dopazo, C., and O’Brien, E.E. 1974. Functional formulation of nonisothermal turbulent reactive flows. Phys. Fluids. 17(11), 1968–1975.
  • Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., and Veynante, D. 2010. A filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame. 157(3), 465–475.
  • Franzelli, B., Riber, E., Gicquel, L.Y.M., and Poinsot, T. 2012. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame. 159(2), 621–637.
  • Gallot-Lavallée, S., and Jones, W.P. 2016. Large eddy simulation of spray auto-ignition under EGR conditions. Flow, Turbul. Combust. 96(2), 513–534.
  • Galpin, J., Naudin, A., Vervisch, L., Angelberger, C., Colin, O., and Domingo, P. 2008. Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust. Flame. 155(1–2), 247–266.
  • Gao, F., and O’Brien, E.E. 1993. A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A. 5(6), 1282–1284.
  • Jones, W.P., Marquis, A.J., and Noh, D. 2015. LES of a methanol spray flame with a stochastic sub-grid model. Proc. Combust. Inst. 35(2), 1685–1691.
  • Jones, W.P., and Navarro-Martinez, S. 2007. Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame. 150(3), 170–187.
  • Jones, W.P., and Prasad, V.N. 2010. Large eddy simulation of the Sandia flame series (D-F) using the Eulerian stochastic field method. Combust. Flame. 157(9), 1621–1636.
  • Jones, W.P., and Prasad, V.N. 2011. LES-pdf simulation of a spark ignited turbulent methane jet. Proc. Combust. Inst. 33(1), 1355–1363.
  • Lecocq, G., Richard, S., Colin, O., and Vervisch, L. 2011. Hybrid presumed pdf and flame surface density approaches for large-eddy simulation of premixed turbulent combustion. Part 1: formalism and simulation of a quasi-steady burner. Combust. Flame. 158(6), 1201–1214.
  • Meier, W., Weigand, P., Duan, X.R., and Giezendanner-Thoben, R. 2007. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame. 150(1–2), 2–26.
  • Mercier, R., Moureau, V., Veynante, D., and Fiorina, B. 2015. LES of turbulent combustion: on the consistency between flame and flow filter scales. Proc. Combust. Inst. 35(2), 1359–1366.
  • Moureau, V., Domingo, P., and Vervisch, L. 2011. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust. Flame. 158(7), 1340–1357.
  • Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., and Bondi, S. 2006. A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame. 145(1–2), 88–104.
  • Oberleithner, K., Stöhr, M., Im, S.H., Arndt, C.M., and Steinberg, A.M. 2015. Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: experiments and linear stability analysis. Combust. Flame. 162(8), 3100–3114.
  • Piomelli, U., and Liu, J. 1995. Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids. 7(4), 839–848.
  • Pitsch, H. 2006. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38(1), 453–482.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, 2nd ed., RT Edwards, Inc., Philadelphia, PA.
  • Roux, S., Lartigue, G., Poinsot, T., Meier, U., and Bérat, C. 2005. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust. Flame. 141(1–2), 40–54.
  • Sabel’nikov, V., and Soulard, O. 2005. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E 72(1), 1–22.
  • Schmidt, H., and Schumann, U. 1989. Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511–562.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164.
  • Steinberg, A.M., Arndt, C.M., and Meier, W. 2013. Parametric study of vortex structures and their dynamics in swirl-stabilized combustion. Proc. Combust. Inst. 34(2), 3117–3125.
  • Stöhr, M., Yin, Z., and Meier, W. 2017. Interaction between velocity fluctuations and equivalence ratio fluctuations during thermoacoustic oscillations in a partially premixed swirl combustor. Proc. Combust. Inst. 36(3), 3907–3915.
  • Sung, C.J., Law, C.K., and Chen, J.Y. 2001. Augmented reduced mechanisms for NO emission in methane oxidation. Combust. Flame. 125(1–2), 906–919.
  • Valiño, L. 1998. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow, Turbul. Combust. 60(2), 157–172.
  • Veynante, D., and Moureau, V. 2015. Analysis of dynamic models for large eddy simulations of turbulent premixed combustion. Combust. Flame. 162(12), 4622–4642.
  • Volpiani, P.S., Schmitt, T., and Veynante, D. 2017. Large eddy simulation of a turbulent swirling premixed flame coupling the TFLES model with a dynamic wrinkling formulation. Combust. Flame. 180, 124–135.
  • Wang, P., Fröhlich, J., Maas, U., He, Z., and Wang, C. 2016. A detailed comparison of two sub-grid scale combustion models via large eddy simulation of the PRECCINSTA gas turbine model combustor. Combust. Flame. 164, 329–345.
  • Yin, Z., Nau, P., and Meier, W. 2017. Responses of combustor surface temperature to flame shape transitions in a turbulent bi-stable swirl flame. Exp. Therm. Fluid Sci. 82, 50–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.