1,648
Views
14
CrossRef citations to date
0
Altmetric
Articles

Thermochemical oscillation of methane MILD combustion diluted with N2/CO2/H2O

, , , , , , & show all
Pages 68-80 | Received 21 Sep 2017, Accepted 19 Jan 2018, Published online: 09 Apr 2018

References

  • Burcat, A., and Ruscic, B. 2005. Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Technical Report, ANL-05/20(September), p. ANL-05/20 TAE 960. doi: 10.2172/925269.
  • Burke, S.M., Burke, U., Mc Donagh, R., Mathieu, O., Osorio, I., Keesee, C., Morones, A., Petersen, E.L., Wang, W., DeVerter, T.A., Oehlschlaeger, M.A., Rhodes, B., Hanson, R.K., Davidson, D.F., Weber, B.W., Sung, C.-J., Santner, J., Ju, Y., Haas, F.M., Dryer, F.L., Volkov, E.N., Nilsson, E.J.K., Konnov, A.A., Alrefae, M., Khaled, F., Farooq, A., Dirrenberger, P., Glaude, P.-A., Battin-Leclerc, F., and Curran, H.J. 2015. An experimental and modeling study of propene oxidation. Part 2: ignition delay time and flame speed measurements. Combust. Flame, 162(2), 296–314. doi:10.1016/j.combustflame.2014.07.032.
  • Cavaliere, A., and De Joannon, M. 2004. Mild combustion. Prog. Energy Combust. Sci., 30(4), 329–366. doi:10.1016/j.pecs.2004.02.003.
  • Cuoci, A., Frassoldati, A., Faravelli, T., and Ranzi, E. 2015. OpenSMOKE++: an object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun., 192, 237–264. doi:10.1016/j.cpc.2015.02.014.
  • Dally, B., and Peters, N. 2007. Heat loss-induced oscillation of methane and ethylene in a perfectly stirred reactor. 6th Asia-Pacific Conference on Combustion, May, pp. 1–4.
  • De Joannon, M., Cavaliere, A., Faravelli, T., Ranzi, E., Sabia, P., and Tregrossi, A. 2005. Analysis of process parameters for steady operations in methane mild combustion technology. Proc. Combust. Inst., 30(2), 2605–2612. doi:10.1016/j.proci.2004.08.190.
  • de Joannon, M., Sabia, P., Tregrossi, A., and Cavaliere, A. 2004. Dynamic behavior of methane oxidation in premixed flow reactor. Combust. Sci. Technol., 176(5–6), 769–783. doi:10.1080/00102200490428387.
  • de Joannon, M., Sabia, P., Tregrossi, A., and Cavaliere, A. 2006. Dilution effects in natural gas mild combustioN. Clean Air: Int. J. Energy Clean Environ. Begel House Inc., 7(2), 127–139. doi:10.1615/InterJEnerCleanEnv.v7.i2.30.
  • El Bakali, A., Dagaut, P., Pillier, L., Desgroux, P., Pauwels, J.F., Rida, A., and Meunier, P. 2004. Experimental and modeling study of the oxidation of natural gas in a premixed flame, shock tube, and jet-stirred reactor. Combust. Flame, 137(1–2), 109–128. doi:10.1016/j.combustflame.2004.01.004.
  • Le Cong, T., Dagaut, P., and Dayma, G. 2008. Oxidation of natural gas, natural gas/syngas mixtures, and effect of burnt gas recirculation: experimental and detailed kinetic modeling. J. Eng. Gas Turb. Power, 130(4), 41502. doi:10.1115/1.2901181.
  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J. 2013. A hierarchical and comparative kinetic modeling study of C1 - C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 45(10), 638–675. doi:10.1002/kin.20802.
  • Sabia, P., de Joannon, M., Fierro, S., Tregrossi, A., and Cavaliere, A. 2007. Hydrogen-enriched methane Mild Combustion in a well stirred reactor. Exp. Therm. Fluid Sci., 31(5), 469–475. doi:10.1016/j.expthermflusci.2006.04.016.
  • Sabia, P., Joannon, M.D., Picarelli, A., and Ragucci, R. 2013. Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure. Combust. Flame, 160(1), 47–55. doi:10.1016/j.combustflame.2012.09.015.
  • Sabia, P., Sorrentino, G., Chinnici, A., Cavaliere, A., and Ragucci, R. 2015. Dynamic behaviors in methane MILD and oxy-fuel combustion. Chemical effect of CO2. Energy Fuels, 29(3), 1978–1986. doi:10.1021/ef501434y.
  • Wada, T., Jarmolowitz, F., Abel, D., and Peters, N. 2010. An instability of diluted lean methane/air combustion: modeling and control. Combust. Sci. Technol., 183(1), 1–19. doi:10.1080/00102201003789147.