299
Views
7
CrossRef citations to date
0
Altmetric
Articles

A thermochemical study on the primary oxidation of sulfur

, , &
Pages 163-177 | Received 21 Sep 2017, Accepted 27 Jan 2018, Published online: 04 Apr 2018

References

  • Andino, J.M., Smith, J.N., Flagan, R.C., Goddard, W.A., and Seinfield, J.H. 1996. Mechanism of atmospheric photooxidation of aromatics: a theoretical study. J. Phys. Chem., 100, 10967–10980.
  • Baboul, A.G., Curtiss, L.A., Redfern, P.C., and Raghavachari, K. 1999. Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. A., 110(16), 7650–7657.
  • Becke, A.D. 1992a. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys., 96(3), 2155–2160.
  • Becke, A.D. 1992b. Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys., 97(12), 9173–9177.
  • Becke, A.D. 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98(7), 5648–5852.
  • Chase, M.W., Jr. 1998. NIST-JANAF Themochemical Tables, 4thed. J. Phys. Chem. Ref. Data, Monograph 9, NIST, New York, 1–1951.
  • Cox, J.D., Wagman, D.D., and Medvedev, V.A. 1984. CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1.
  • Curtiss, L.A., Raghavachari, K., Redfern, P.C., and Pople, J.A. 2000. Assessment of Gaussian-3 and density functional theories for a larger experimental test set. J. Chem. Phys., 112, 7374.
  • Curtiss, L.A., Raghavachari, K., Redfern, P.C., Rassolov, V., and Pople, J.A. 1998. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys., 109, 7764–7776.
  • Curtiss, L.A., Raghavachari, K., and Trucks, G.W. 1991. Gaussian-2 theory for molecular energies of first- and second-row compounds. Chem. Phys., 94(11), 7221–7230.
  • Curtiss, L.A., Redfern, P.C., Raghavachari, K., Rassolov, V., and Pople, J.A. 1999. Gaussian-3 theory using reduced Møller-Plesset order. J. Chem. Phys., 110, 4703.
  • Durant, J.L. 1996. Evaluation of transition state properties by density functional theory. Chem Phys Lett., 256, 595.
  • Fleig, D., Alzueta, M.U., Normann, F., Abián, M., Andersson, K., and Johnsson, F. 2013. Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions. Combustion and Flame., 160, 1142–1151.
  • Gaussian 03, Revision A.1, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Salvador, P., Dannenberg, J.J., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., and Pople, J.A. 2003. Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh PA. http://www.gaussian.com/index.htm.
  • Glarborg, P., Kubel, D., Dam-Johansen, K., Chiang, H., and Bozzelli, J.W. 1996. Impact of SO2 and NO on CO oxidation under post-flame conditions. Int. J. Chem. Kinet., 28, 773–790.
  • Guo, X., Nadykto, A.B., Xu, Y., Zhang, Q., and Hu, J. 2014. Ab initio investigation of the thermochemistry and kinetics of the SO2 + O3− → SO3− + O2 reaction in aircraft engines and the environment. J. Entropy., 16, 6300–6312.
  • Hills, A.J., Cicerone, R.J., Calvert, J.G., and Birks, J.W. 1987. Kinetics of the reactions of S2 with O, O2, O3, N2O, NO, and NO2. J. Phys. Chem., 91(5), 1199–1204.
  • IUPAC. 2006. Compendium of Chemical Terminology, 2nd ed. (1997) the “Gold Book”, Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford. Online corrected version: (2006) “transition state theory. https://doi.org/10.1351/goldbook.R05230
  • Jiang, S.-D., Wan, Z.-H., Zhou, J.-H., Wen, Z.-C., and Cen, K.-F. 2009. A quantum chemistry study on reaction mechanisms of SO2 with O3 and H2O2. J. Zhejiang Univ Sci A., 10(9), 1327–1333.
  • Louie, D.K. 2005. Handbook of Sulphuric Acid Manufacturing, DKL Engineering.
  • Mayer, P. M.; Parkinson, O. J.; Smith, D. M.; Radom, L. 1998. An assessment of theoretical procedures for the calculation of reliable free radical thermochemistry: a recommended new procedure. J. Chem. Phys., 108, 604.
  • Lu, C.-W., Wu, Y.-J., Lee, Y.-P., Zhu, R.S., and Lin, M.C. 2004. Experimental and theoretical investigations of rate coefficients of the reaction S(3P)+O2 in the temperature range 298-878 K. J. Chem. Phys., 121, 8271.
  • Merryman, E.M., and Levy, A. 1967. Kinetics of Sulfur-Oxide formation in flames: II. Low pressure H2S flames. J. Air Pollut. Control Assoc., 17, 800–806.
  • Montgomery, J.A., Jr., Frisch, M.J., Ochterski, J.W., and Petersson, G.A. 1999. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys., 110, 2822.
  • Montgomery, J.A., Ochterski, J.W., and Petersson, G.A. 1994. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys., 101, 5900.
  • Naidoo, J., Goumri, A., and Paul Marshall, P. 2005. A kinetic study of the reaction of atomic oxygen with SO2. Proc. Combust. Inst., 30, 1219.
  • NIST http://webbook.nist.gov/chemistry/
  • PEGASUS. 2016. Renewable power generation by solar particle receiver driven sulphur storage cycle. horizon 2020. H2020-LCE-2016-2017. Competitive Low-Carbon Energy.
  • Petersson, G.A., Malick, D.K., and Wilson, W.G. 1998. Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. J. Chem. Phys., 109, 10570.
  • Redfern, P.C., Zapol, P., Curtiss, L.A., and Raghavachari, K. 2000. Assessment of Gaussian-3 and density functional theories for enthalpies of formation of C1−C16 Alkanes. J. Phys. Chem. A., 104, 5850–5854.
  • Sebbar, N., Bozzelli, J., Bockhorn, W., and Int, H. 2005b. Enthalpy of formation and bond energies on unsaturated oxygenated hydrocarbons using G3MP2B3 calculation methods. J. Chem. Kinet., 37, 633–648.
  • Sebbar, N., Bozzelli, J.W., and Bockhorn, H. 2005a. Thermochemical properties, rotation barriers, and group additivity for unsaturated oxygenated hydrocarbons and radicals resulting from reaction of vinyl and phenyl radical systems with O2. J. Phys. Chem. A., 109, 2233–2253.
  • Sebbar, N., Bozzelli, J.W., and Bockhorn, H. 2014. Thermochemistry and kinetics for 2-Butanone-1-yl Radical (CH2·C(═O)CH2CH3) Reactions with O2. J. Phys. Chem. A., 118, 21−37.
  • Tsuchiya, K., Kamiya, K., and Matsui, H. 1997. Studies on the oxidation mechanism of H2S based on direct examination of the key reactions. Int. J. Chem. Kinet., 29, 57–66.
  • Wong, M.W., and Radom, L. 1998. Radical addition to alkenes: further assessment of theoretical procedures. J. Phys. Chem. A., 102, 2237–2245.
  • Yilmaz, A., Hindiyarti, L., Jensen, A.D., Glarborg, P., and Marshall, P. 2006. Thermal dissociation of SO3 at 1000-1400 K. J. Phys. Chem. A., 110, 6654–6659.
  • Zhang, Y., Yang, H., Zhou, J., Wang, Z., Liu, J., and Cen, K. 2014. Detailed kinetic modeling of homogeneous H2SO4 decomposition in the sulfur–iodine cycle for hydrogen production. Applied Energy., 130, 396–402.
  • Zhao, Y., Lynch, B.J., and Truhlar, D.G. 2004. Quantum chemical study of C–SH bond dissociation energies for some thiol compounds. J. Phys. Chem. A., 108, 2715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.