396
Views
8
CrossRef citations to date
0
Altmetric
Articles

The pressure dependence of laminar flame speed of 2-methyl-2-butene/air flames in the 0.1–1.0 MPa range

, &
Pages 1886-1899 | Received 03 Dec 2017, Accepted 17 Apr 2018, Published online: 14 May 2018

References

  • Burke, M.P., Chen, Z., Ju, Y., and Dryer, F.L. 2009. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust. Flame., 156, 771–779.
  • Burke, S.M., Burke, U., Mc Donagh, R., Mathieu, O., Osorio, I., Keesee, C., et al. 2015. An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combust. Flame., 162, 296–314.
  • Burke, S.M., Metcalfe, W., Herbinet, O., Battin-Leclerc, F., Haas, F.M., Santner, J., et al. 2014. An experimental and modeling study of propene oxidation. Part 1: Speciation measurements in jet-stirred and flow reactors. Combust. Flame., 161, 2765–2784.
  • Carriere, T., Westmoreland, P.R., Kazakov, A., Stein, Y.S., and Dryer, F.L. 2002. Modeling ethylene combustion from low to high pressure. Proc. Combust. Inst., 29, 1257–1266.
  • Chakir, A., Cathonnet, M., Boettner, J.C., and Gaillard, F. 1989. Kinetic study of 1-butene oxidation in a jet-stirred flow reactor. Proc. Combust. Inst., 22, 873–881.
  • Cheng, Y., Hu, E., Deng, F., Yang, F., Zhang, Y., Tang, C., et al. 2016. Experimental and kinetic comparative study on ignition characteristics of 1-pentene and n-pentane. Fuel., 172, 263–272.
  • Cheng, Y., Hu, E., Lu, X., Li, X., Gong, J., Li, Q., et al. 2017a. Experimental and kinetic study of pentene isomers and n-pentane in laminar flames. Proc. Combust. Inst., 36, 1279–1286.
  • Cheng, Y., Hu, E., Lu, X., Li, X., Gong, J., Li, Q., et al. 2017b. Experimental and kinetic study of pentene isomers and n-pentane in laminar flames. Proc. Combust. Inst., 36, 1279–1286.
  • Colket, M., Edwards, T., Williams, S., Cernansky, N.P., Miller, D.L., Egolfopoulos, F., et al. 2007. Development of an experimental database and kinetic models for surrogate jet fuels. 45th AIAA Aerosp. Sci. Meeting Exhibit., 724, 1–21.
  • Dagaut, P., Cathonnet, M., and Boettner, J. 1988. Experimental study and kinetic modeling of propene oxidation in a jet stirred flow reactor. J. Phys. Chem., 92, 661–671.
  • Davis, S., Wang, H., Breinsky, K., and Law, C. 1996. Laminar flame speeds and oxidation kinetics of benene-air and toluene-air flames. Proc. Combust. Inst., 26, 1025–1033.
  • Emdee, J., Brezinsky, K., and Glassman, I. 1992. A kinetic model for the oxidation of toluene near 1200 K. J. Phys. Chem., 96, 2151–2161.
  • Fan, X., Wang, G., Li, Y., Wang, Z., Yuan, W., and Zhao, L. 2016. Experimental and kinetic modeling study of 1-hexene combustion at various pressures. Combust. Flame., 173, 151–160.
  • Handford-Styring, S.M., and Walker, R.W. 1995. Addition of cyclopentane to slowly reacting mixtures of H2 + O2 between 673 and 783 K: reactions of H and OH with cyclopentane and of cyclopentyl radicals. J. Chem. Soc. Faraday Trans., 91, 1431–1438.
  • Johnston, R.J., and Farrell, J.T. 2005. Laminar burning velocities and Markstein lengths of aromatics at elevated temperature and pressure. Proc. Combust. Inst., 30, 217–224.
  • Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J., and Meeks, E. 1985. PREMIX: a Fortran program for modeling steady laminar one-dimensional premixed flames.. Sandia National Laboratories Report, SAND85-8249.
  • Kelley, A.P., and Law, C.K. 2009. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust. Flame., 156, 1844–1851.
  • Konnov, A.A., Meuwissen, R.J., and De Goey, L.P.H. 2011. The temperature dependence of the laminar burning velocity of ethanol flames. Proc. Combust. Inst., 33, 1011–1019.
  • Lemaire, O., Ribaucour, M., Carlier, M., and Minetti, R. 2001. The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1, 3-diene. ‎Combust. Flame., 127, 1971–1980.
  • Liao, S.Y., Jiang, D.M., Huang, Z.H., Zeng, K., and Cheng, Q. 2007. Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures. Appl. Thermal Eng., 27, 374–380.
  • Lindstedt, R.P., and Skevis, G. 1994. Detailed kinetic modeling of premixed benzene flames. Combust. Flame., 99, 551–561.
  • Liu, K., Fu, J., Deng, B., Yang, J., Tang, Q., and Liu, J. 2014. The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends. Energy., 73, 703–715.
  • Mehl, M., Vanhove, G., Pitz, W.J., and Ranzi, E. 2008. Oxidation and combustion of the n-hexene isomers: a wide range kinetic modeling study. Combust. Flame., 155, 756–772.
  • Meng, X., Hu, E., Li, X., and Huang, Z. 2016. Experimental and kinetic study on laminar flame speeds of styrene and ethylbenzene. Fuel., 185, 916–924.
  • Metghalchi, M., and Keck, J.C. 1982. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. ‎Combust. Flame., 48, 191–210.
  • Minetti, R., Roubaud, A., Therssen, E., Ribaucour, M., and Sochet, L. 1999. The chemistry of pre-ignition of n-pentane and 1-pentene. Combust. Flame., 118, 213–220.
  • Pan, L., Hu, E., Zhang, J., Tian, Z., Li, X., and Huang, Z. 2015. A high pressure shock tube study of 1-butene oxidation and its comparison with n-butane and alkenes. Fuel., 157, 21–27.
  • Penyazkov, O.G., Sevrouk, K.L., Tangirala, V., and Joshi, N. 2009. High-pressure ethylene oxidation behind reflected shock waves. Proc. Combust. Inst., 32, 2421–2428.
  • Pera, C., and Knop, V. 2012. Methodology to define gasoline surrogates dedicated to auto-ignition in engines. Fuel., 96, 59–69.
  • Qin, Z., Yang, H., and Gardiner, W.C., Jr. 2001. Measurement and modeling of shock-tube ignition delay for propene. Combust. Flame., 124, 246–254.
  • Ribaucour, M., Minetti, R., and Sochet, L.R. 1998. Autoignition of n-pentane and 1-pentene: experimental data and kinetic modeling. Proc. Combust. Inst., 27, 345–351.
  • Saxena, S., Kahandawala, M.S.P., and Sidhu, S.S. 2011. A shock tube study of ignition delay in the combustion of ethylene. Combust. Flame., 158, 1019–1031.
  • Sheen, D.A., You, X., Wang, H., and Løvås, T. 2009. Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion. Proc. Combust. Inst., 32, 535–542.
  • Silke, E.J., Pitz, W.J., Westbrook, C.K., and Ribaucour, M. 2007. Detailed chemical kinetic modeling of cyclohexane oxidation. J. Phys. Chem., 111, 3761–3775.
  • Simmie, J.M. 2003. Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Prog. Energy Combust. Sci., 29, 599–634.
  • Touchard, S., Buda, F., Dayma, G., Glaude, P.-A., Fournet, R., and Battin-Leclerc, F. 2005. Experimental and modeling study of the oxidation of 1=pentene at high temperature. Int. J. Chem. Kinet., 37, 451–463.
  • Vanhove, G., Ribaucour, M., and Minetti, R. 2005. On the influence of the position of the double bond on the low-temperature chemistry of hexenes. Proc. Combust. Inst., 30, 1065–1072.
  • Wang, C.-H., Ueng, G.-J., and Tsay, M.-S. 1998. An experimental determination of the laminar burning velocities and extinction stretch rates of benzene/air flames. Combust. Flame., 113, 242–248.
  • Westbrook, C.K., Pitz, W.J., Mehl, M., Glaude, P.A., Herbinet, O., Bax, S., et al. 2015. Experimental and kinetic modeling study of 2-methyl-2-butene: allylic hydrocarbon kinetics. J. Phys. Chem. A., 119, 7462–7480.
  • Wilk, R.D., Cernansky, N., and Cohen, R.S. 1987. An experimental study of propene oxidation at low and intermediate temperatures. Combust. Sci. Technol., 52, 39–58.
  • Wu, C., and Law, C.K. 1985. On the determination of laminar flame speeds from stretched flames. Proc. Combust. Inst., 20, 1941–1949.
  • Wu, Y., Modica, V., Rossow, B., and Grisch, F. 2016. Effects of pressure and preheating temperature on the laminar flame speed of methane/air and acetone/air mixtures. Fuel., 185, 577–588.
  • Yahyaoui, M., Djebailichaumeix, N., Dagaut, P., Paillard, C., and Gail, S. 2006. Kinetics of 1-hexene oxidation in a JSR and a shock tube: experimental and modeling study. Combust. Flame., 147, 67–78.
  • Yahyaoui, M., Djebaïli-Chaumeix, N., Paillard, C.E., Touchard, S., Fournet, R., Glaude, P.A., et al. 2005. Experimental and modeling study of 1-hexene oxidation behind reflected shock waves. Proc. Combust. Inst., 30, 1137–1145.
  • Yang, F., Deng, F., Zhang, P., Hu, E., Cheng, Y., and Huang, Z. 2016a. Comparative study on ignition characteristics of 1-hexene and 2-hexene behind reflected shock waves. Energy Fuels., 30, 5130–5137.
  • Yang, F., Deng, F., Zhang, P., Tian, Z., Tang, C., and Huang, Z. 2016b. Experimental and kinetic modeling study on trans-3-hexene ignition behind reflected shock waves. Energy Fuels., 30, 706–716.
  • Zhang, Y., Cai, J., Zhao, L., Yang, J., Jin, H., Cheng, Z., et al. 2012. An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combust. Flame., 159, 905–917.
  • Zhao, P., Yuan, W., Sun, H., Li, Y., Kelley, A.P., Zheng, X., et al. 2015. Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers. Proc. Combust. Inst., 35, 309–316.
  • Zhong, B.-J., and Peng, H.-S. 2017. Measurement of laminar flame speed and chemical kinetic model of 1-pentene/air mixtures. Combust. Sci. Technol., 189, 1681–1695.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.