259
Views
10
CrossRef citations to date
0
Altmetric
Articles

Study of SiCl4/H2/O2 chemical kinetics and its application to fused silica glass synthesis

, &
Pages 1861-1885 | Received 03 Jun 2016, Accepted 10 May 2018, Published online: 26 Jul 2018

References

  • Binnewies, M., and Jug, K. 2000. The formation of a solid from the reaction SiCl4(g)+O2(g)→ SiO2(s) + 2Cl2(g). Eur. J. Inorg. Chem., 2000, 1127–1138.
  • Catoire, L., Woiki, D., and Roth, P. 1997a. Kinetics of the initiation step of the thermal decomposition of SiCl4. Int. J. Chem. Kinet., 29, 415–420.
  • Catoire, L., Woiki, D., and Roth, P. 1997b. A shock tube study of the reaction of H atoms with SiCl4. Int. J. Chem. Kinet., 29, 469–472.
  • Cho, J., and Choi, M. 2000. Determination of number density, size and morphology of aggregates in coflow diffusion flames using light scattering and local sampling. J. Aerosol Sci., 31, 1077–1095.
  • Frouzakis, C.E., and Boulouchos, K. 2000. Analysis and reduction of the CH4-Air mechanism at lean conditions. Combust. Sci. Technol., 159, 281–303.
  • Gao, Z.X., Jiang, C.W., and Lee, C.H. 2016. On the laminar finite rate model and flamelet model for supersonic turbulent combustion flows. Int. J. Hydrogen Energ., 41, 13238–13253.
  • Habik, S.E., El-Sherif, S.A., Cho, P., and Abata, D.L. 1999. Developed reduced reaction mechanisms for practical high hydrocarbon fuels. Combust. Sci. Technol., 148, 93–133.
  • Hafiz, O.K.M., and Singh, A. 2011. CFD simulation of laser enhanced modified chemical vapor deposition process. Chem. Eng. Res. Des., 89, 593–602.
  • Hannebauer, B., and Menzel, F. 2003. The combustion of SiCl4 in hot O2/H2 flames. Z. Anorg. Allg. Chem., 629, 1485–1490.
  • Ho, W., Yu, Q.-R., and Bozzelli, J.W. 1992. Kinetic study on pyrolysis and oxidation of CH3Cl in Ar/H2/O2 mixtures. Combust. Sci. Technol., 85, 23–63.
  • Huang, Y.S., Zheng, L.L., Zhang, H., Zhang, G.W., and Jiang, L.X. 2017. Design and optimization of substrate placement for large-sized and high-quality fused silica glass by SiCl4 flame hydrolysis deposition. Int. J. Heat Mass Transfer., 111, 917–932.
  • Jachimowski, C.J., and McLain, A.G. 1983. A Chemical Kinetic Mechanism for the Ignition of Silane/Hydrogen Mixtures, NASA Technical Paper, 2129, Langley Research Center.
  • Kee, R.J., Rupley, F.M., and Miller, J.A. 1993. CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, SAND89-8009B, UC-706 Sandia National Laboratories, Albuquerque, New Mexico.
  • Kim, J.I., Hwang, J.Y., Lee, J., Choi, M., and Chung, S.H. 2005. Numerical and experimental study on silica generating counterflow diffusion flames. Int. J. Heat Mass Transfer., 48, 75–81.
  • Kochubei, V.F. 1997. Kinetics of the gas-phase hydrolysis of silicon tetrachloride. Kinet. Catal., 38, 212–214.
  • Law, C.K. 2005. Comprehensive description of chemistry in combustion modeling. Combust. Sci. Technol., 177, 845–870.
  • Lee, B.W., Oh, S., and Choi, M. 2001. Simulation of growth of nonspherical silica nanoparticles in a premixed flat flame. Aerosol Sci. Technol., 35, 978–989.
  • Lee, J., Olfert, J., Altman, I.S., and Choi, M. 2010. Determination of particle temperatures in a silica-generating counterflow flame via flame emission measurements. Int. J. Heat Mass Transfer., 53, 564–567.
  • Liang, L., Stevens, J.G., and Farrell, J.T. 2009a. A dynamic adaptive chemistry scheme for reactive flow computations. Proc. Combust. Inst., 32, 527–534.
  • Liang, L., Stevens, J.G., Raman, S., and Farrell, J.T. 2009b. The use of dynamic adaptive chemistry in combustion simulation of gasoline surrogate fuels. Combust. Flame., 156, 1493–1502.
  • Linow, S., Schneider, C., Geiss, S., Janicka, J., Hassel, E.P., and Rüdiger, F. 2002. Experimental study of the synthesis of fused silica by direct combustion hydrolysis. Exp. Fluids., 32, 66–75.
  • Lu, T., and Law, C.K. 2005. A directed relation graph method for mechanism reduction. Proc. Combust. Inst., 30, 1333–1341.
  • Lu, T., and Law, C.K. 2006. On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame., 146, 472–483.
  • Lu, T., and Law, C.K. 2009. Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci., 35, 192–215.
  • Lu, Z., Zhou, L., Ren, Z., Lu, T., and Law, C.K. 2016. Effects of spray and turbulence modelling on the mixing and combustion characteristics of an n-heptane spray flame simulated with dynamic adaptive chemistry. Flow. Turbul. Combust., 97(2), 609–629.
  • Luche, J., Reuillon, M., Boettner, J.C., and Cathonnet, M. 2004. Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion. Combust. Sci. Technol., 176, 1935–1963.
  • Ma, Y.F., Wu, N., Zhang, H., Zhang, S., and Zheng, L.L. 2014. Thermal annealing system and process design to improve quality of large size glasses. Int. J. Heat Mass Transfer., 72, 411–422.
  • Moore, T., Brady, B., and Martin, L.R. 2006. Measurements and modeling of SiCl4 combustion in a low-pressure H2/O2 flame. Combust. Flame., 146, 407–418.
  • Nasonova, A., Park, D.W., Charinpanitkul, T., and Kim, K.S. 2012. Numerical analysis on premixed combustion of H2-SiCl4-Air system to prepare SiO2 particles. J. Ind. Eng. Chem., 18, 509–512.
  • Neagos, A., Bykov, V., and Maas, U. 2014. Study of extinction limits of diluted hydrogen-air counter-flow diffusion flames with the Redim method. Combust. Sci. Technol., 186, 1502–1516.
  • Oluwole, O.O., Ren, Z., Petre, C., and Goldin, G. 2015. Decoupled species and reaction reduction: an error-controlled method for dynamic adaptive chemistry simulations. Combust. Flame., 162, 1934–1943.
  • Panda, S., and Pratsinis, S.E. 1995. Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor. Nanostruct. Mater., 5, 755–767.
  • Pope, S.B., and Ren, Z. 2009. Efficient implementation of chemistry in computational combustion. Flow. Turbul. Combust., 82, 437–453.
  • Powers, D.R. 1978. Kinetics of SiCl4 oxidation. J. Am. Ceram. Soc., 61, 295–297.
  • Ren, Z., Liu, Y., Lu, T., Lu, L., Oluwole, O.O., and Goldin, G.M. 2014. The use of dynamic adaptive chemistry and tabulation in reactive flow simulations. Combust. Flame., 161, 127–137.
  • Takahashi, T., Hagiwara, K.E., and Komiyama, H. 1996. The effect of gas-phase additives C2H4, C2H6, and C2H2 on SiH4/O2 chemical vapor deposition. J. Electrochem. Soc., 143(4), 1355–1361.
  • Tsai, H.C., Greif, R., and Joh, S. 1995. A study of thermophoretic transport in a reacting flow with application to external chemical vapor deposition processes. Int. J. Heat Mass Transfer., 38, 1901–1910.
  • Yamagata, S. 1992. Effects of OH-group on distribution of refractive index in silica glass. J. Ceram. Soc. Japan., 100, 337–341.
  • Yang, H., Ren, Z., Lu, T., and Goldin, G.M. 2013. Dynamic adaptive chemistry for turbulent flame simulations. Combust. Theor. Model., 17, 167–183.
  • Yuferev, V.S., Budenkova, O.N., Vasiliev, M.G., Rukolaine, S.A., Shlegel, V.N., Vasiliev, Y.V., and A.I, Z. 2003. Variations of solid–liquid interface in the BGO low thermal gradients Cz growth for diffuse and specular crystal side surface. J. Crystal Growth., 253, 383–397.
  • Zachariah, M.R., and Tsang, W. 1995. Theoretical calculation of thermochemistry, energetics, and kinetics of high-temperature SixHyOz reactions. J. Phys. Chem., 99, 5308–5318.
  • Zheng, L.L. 1993. Studies of hydrogen-air turbulent diffusion flames for subsonic and supersonic flows. Ph. D. Thesis, University of Cambridge, UK.
  • Zhou, L., Lu, Z., Ren, Z., Lu, T., and Luo, K.H. 2015. Numerical analysis of ignition and flame stabilization in an n-heptane spray flame. Int. J. Heat Mass Transfer., 88, 565–571.
  • Zhou, X., and Mahalingam, S. 2001. Evaluation of reduced mechanism for modeling combustion of pyrolysis gas in wildland fire. Combust. Sci. Technol., 171, 39–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.