323
Views
16
CrossRef citations to date
0
Altmetric
Articles

The Relationship between Functional Groups and Gaseous Productions and Micropore Structures Development of Coal Oxidized at Low Temperature under Methane-Diluted Atmospheres

, , , , &
Pages 1337-1353 | Received 31 Mar 2018, Accepted 19 Sep 2018, Published online: 04 Oct 2018

References

  • Beamish, B.B., Barakat, M.A., and St. George, J.D. 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. Int J Coal Geol., 45(2–3), 217–224. doi:10.1016/S0166-5162(00)00034-3
  • Calemma, V., Iwanski, P., Rausa, R., and Girardi, E. 1994. Changes in coal structure accompanying the formation of regenerated humic acids during air oxidation. Fuel, 73(5), 700–707. doi:10.1016/0016-2361(94)90012-4
  • Cheng, W.M., Hu, X.M., and Xie, J. 2017a. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. Fuel, 210, 826–835. doi:10.1016/j.fuel.2017.09.007
  • Cheng, W.M., Hu, X.M., and Zhao, Y.Y. 2017b. Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels. E-Polymers, 17(1), 95–106. doi:10.1515/epoly-2016-0250
  • Derychova, K., Perdochova, M., Veznikova, H., and Bernatik, A. 2016. The composition of gaseous products of low-temperature oxidation of coal mass and biomass depending on temperature. J Loss Prevent Proc., 43, 203–211. doi:10.1016/j.jlp.2016.05.022
  • Fan, S.S., and Sheng, C.D. 2016. Impact of inorganic matter on the low-temperature oxidation of cornstalk and cellulose chars. Energy Fuels, 30(3), 1783–1791. doi:10.1021/acs.energyfuels.5b02287
  • Hu, X.C., Yang, S.Q., Liu, W.V., Zhou, X.H., Sun, J.W., and Yu, H. 2017. A methane emission control strategy in the initial mining range at a spontaneous combustion-prone longwall face: A case study in coal 15, Shigang Mine, China. J Nat Gas Sci Eng., 38, 504–515. doi:10.1016/j.jngse.2017.01.007
  • Hu, Z.X., Hu, X.M., Cheng, W.M., and Lu, W. 2018. Influence of synthetic conditions on the performance of melamine–phenol–formaldehyde resin microcapsules. High Perform Polym., 1018297096. doi:10.1177/0954008318758489
  • Kidena, K., Murakami, M., Murata, S., and Nomura, M. 2003. Low-temperature oxidation of coal - Suggestion of evaluation method of active methylene sites. Energy Fuels, 17(4), 1043–1047. doi:10.1021/ef020293c
  • Kong, B., Li, Z.H., Wang, E.Y., Lu, W., Chen, L., and Qi, G.S. 2018a. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. Process Safety and Environmental Protection, 119, 285–294. doi:10.1016/j.psep.2018.08.002
  • Kong, B., Wang, E.Y., and Li, Z.H. 2018b. Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating. Geomechanics Eng., 15(5), 1–9. doi:10.12989/gae.2018.15.5.000
  • Kong, B., Wang, E.Y., and Li, Z.H. 2018c. The effect of high temperature environment on rock properties - an example of electromagnetic radiation characterization. Environmental Science and Pollution Research, 25(29), 29104–29114. doi:10.1007/s11356-018-2940-z
  • Krajciova, M., Jelemensky, E., Kisa, M., and Markos, J. 2004. Model predictions on self-heating and prevention of stockpiled coals. J Loss Prevent Proc, 17(3), 205–216. doi:10.1016/j.jlp.2004.02.002
  • Li, J.H., Li, Z.H., Yang, Y.L., Kong, B., and Wang, C.J. 2018. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Process. Technol., 171, 350–360. doi:10.1016/j.fuproc.2017.09.027
  • Li, Z.H., Kong, B., Wei, A.Z., Yang, Y.L., Zhou, Y.B., and Zhang, L.Z. 2016. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res., 23(23), 23593–23605. doi:10.1007/s11356-016-7589-x
  • Liang, Y.T., Zhang, J., Ren, T., Wang, Z.W., and Song, S.L. 2018. Application of ventilation simulation to spontaneous combustion control in underground coal mine: A case study from Bulianta colliery. Int. J. Mining Sci. Technol., 28(2), 231–242. doi:10.1016/j.ijmst.2017.12.005
  • Liu, W., and Qin, Y.P. 2017. A quantitative approach to evaluate risks of spontaneous combustion in longwall gobs based on CO emissions at upper corner. Fuel, 210, 359–370. doi:10.1016/j.fuel.2017.08.083
  • Meng, F.R., Tahmasebi, A., Yu, J.L., Zhao, H., Han, Y.N., Lucas, J., and Wall, T. 2014. Low-temperature oxidation characteristics of lignite chars from low-temperature pyrolysis. Energy Fuels, 28(9), 5612–5622. doi:10.1021/ef501004t
  • Michaelian, K.H., and Friesen, W.I. 1990. Photoacoustic FT-i.r. spectra of separated western Canadian coal macerals: analysis of the CH stretching region by curve-fitting and deconvolution. Fuel, 69, 1271–1275. doi:10.1016/0016-2361(90)90288-2
  • Ni, G.H., Li, Z., and Xie, H.C. 2018a. The mechanism and relief method of the coal seam water blocking effect (WBE) based on the surfactants. Powder Technol., 323, 60–68. doi:10.1016/j.powtec.2017.09.044
  • Ni, G.H., Xie, H.C., Li, Z., Zhuansun, L.X., and Niu, Y.Y. 2018b. Improving the permeability of coal seam with pulsating hydraulic fracturing technique: a case study in Changping coal mine, China. Process. Saf. Environ. Prot., 117, 565–572. doi:10.1016/j.psep.2018.06.001
  • Ning, P.L., Li, K., Yi, H.H., Tang, X.L., Peng, J.H., He, D., Wang, H.Y., and Zhao, S.Z. 2012. Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over modified microwave coal-based active carbon catalysts at low temperature. J Phys Chem C., 116(32), 17055–17062. doi:10.1021/jp304540y
  • Nugroho, Y.S., McIntosh, A.C., and Gibbs, B.M. 2000. Low-temperature oxidation of single and blended coals. Fuel, 79(15), 1951–1961. doi:10.1016/S0016-2361(00)00053-3
  • Pietrzak, R., and Wachowska, H. 2003. Low temperature oxidation of coals of different rank and different sulphur content. Fuel, 82(6), 705–713. doi:10.1016/S0016-2361(02)00364-2
  • Ren, X.W., Wang, F.Z., Guo, Q., Zuo, Z.B., and Fang, Q.S. 2015. Application of foam-gel technique to control CO exposure generated during spontaneous combustion of coal in coal mines. J Occup Environ Hyg., 12(11), D239–D245. doi:10.1080/15459624.2015.1072633
  • Rosema, A., Guan, H., and Veld, H. 2001. Simulation of spontaneous combustion, to study the causes of coal fires in the Rujigou Basin. Fuel, 80(1), 7–16. doi:10.1016/S0016-2361(00)00065-X
  • Simion, S., Toth, I., and Cioclea, D. 2005. New technologies used for the prevention of spontaneous combustion occurences in coal mines. In Gillies, A. (Ed.), Australasian Institute of Mining and Metallurgy Publication Series, Australasian Inst Mining & Metallurgy, Parkville Victoria, pp. 507–510.
  • Tahmasebi, A., Yu, J., Han, Y., Yin, F., Bhattacharya, S., and Stokie, D. 2012. Study of chemical structure changes of Chinese lignite upon drying in superheated steam, microwave, and hot air. Energy Fuels, 26(6), 3651–3660. doi:10.1021/ef300559b
  • Tang, Z.Q., Zhai, C., Zou, Q.L., and Qin, L. 2016. Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance. Fuel, 186, 571–578. doi:10.1016/j.fuel.2016.08.103
  • Wang, D.M. 2012. The Coal Oxidation Dynamics: Theory and Application, Science Press, Beijing, China.
  • Wang, D.M., Xin, H.H., Qi, X.Y., Dou, G.L., Qi, G.S., and Ma, L.Y. 2016. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics. Combust Flame, 163, 447–460. doi:10.1016/j.combustflame.2015.10.019
  • Wang, H., Dlugogorski, B.Z., and Kennedy, E.M. 1999. Theoretical analysis of reaction regimes in low-temperature oxidation of coal. Fuel, 78, 1073–1081. doi:10.1016/S0016-2361(99)00016-2
  • Worasuwannarak, N., Nakagawa, H., and Miura, K. 2002. Effect of pre-oxidation at low temperature on the carbonization behavior of coal. Fuel, 81(11–12), 1477–1484. doi:10.1016/S0016-2361(02)00083-2
  • Wu, D., Liu, G.J., Sun, R.Y., and Fan, X. 2013. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction. Energy Fuels, 27(10), 5823–5830. doi:10.1021/ef401276h
  • Yang, S.Q., Hu, X.C., Liu, W.V., Cai, J.W., and Zhou, X.H. 2018. Spontaneous combustion influenced by surface methane drainage and its prediction by rescaled range analysis. Int. J. Mining Sci. Technol., 28(2), 215–221. doi:10.1016/j.ijmst.2017.12.004
  • Zhang, Q., Hu, X.M., Wu, M.Y., Zhao, Y.Y., and Yu, C. 2018. Effects of different catalysts on the structure and properties of polyurethane/water glass grouting materials. J Appl Polym Sci., 135(27), 46460. doi:10.1002/app.46460
  • Zhang, S.H., Tang, S.H., Tang, D.Z., Huang, W.H., and Pan, Z.J. 2014. Determining fractal dimensions of coal pores by FHH model: problems and effects. J Nat Gas Sci Eng, 21, 929–939. doi:10.1016/j.jngse.2014.10.018
  • Zhang, Y.L., Wu, J.M., Chang, L.P., Wang, J.F., Xue, S., and Li, Z.F. 2013. Kinetic and thermodynamic studies on the mechanism of low-temperature oxidation of coal: A case study of Shendong coal (China). Int J Coal Geol, 120, 41–49. doi:10.1016/j.coal.2013.09.005
  • Zhang, Y.N., Deng, J., Wang, W.F., and Li., S.R. 2012. Experimental study on infrared spectrum characteristics of coal in low temperature oxidation. Appl. Mechanics Mater., 184–185, 1394–1399. doi:10.4028/www.scientific.net/AMM.184-185.1394
  • Zhao, H., Geng, X.Z., Yu, J.L., Xin, B.B., Yin, F.K., and Tahmasebi, A. 2016. Effects of drying method on self-heating behavior of lignite during low-temperature oxidation. Fuel Process. Technol, 151, 11–18. doi:10.1016/j.fuproc.2016.05.031
  • Zhou, C.S., Zhang, Y.L., Wang, J.F., Xue, S., Wu, J.M., and Chang, L.P. 2017. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal. Int J Coal Geol, 171, 212–222. doi:10.1016/j.coal.2017.01.013
  • Zhou, F.B. 2012. Study on the coexistence of gas and coal spontaneous combustion (I): disaster mechanism. J. China Coal Soc, 5, 843–849.
  • Zhou, F.B., Xia, T.Q., and Shi, B.B. 2013. Coexistence of gas and coal spontaneous combustion (II): new prevention and control technologies. J. China Coal Soc., 3, 353–360.
  • Zhu, Q.H., Chang, M.R., and Wang, H.Y. 2017. Study on primal CO gas generation and emission of coal seam. Int. J. Mining Sci. Technol., 27(6), 973–979. doi:10.1016/j.ijmst.2017.06.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.