338
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effects of Carbon Dioxide and Water Vapor Addition on Benzene and PAH Formation in a Laminar Premixed CH4/O2/Ar Flame

, , &
Pages 1866-1897 | Received 21 May 2018, Accepted 12 Oct 2018, Published online: 30 Oct 2018

References

  • Alexiou, A., and Williams, A. 1996. Soot formation in shock-tube pyrolysis of toluene, toluene-methanol, toluene-ethanol, and toluene-oxygen mixtures. Combust. Flame., 104, 51–65. doi:10.1016/0010-2180(95)00004-6
  • Appel, J., Bockhorn, H., and Frenklach, M. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust. Flame., 121, 122–136. doi:10.1016/S0010-2180(99)00135-2
  • Arnal, C., Alzueta, M., Millera, A., and Bilbao, R. 2012. Influence of water vapor addition on soot oxidation at high temperature. Energy, 43, 55–63. doi:10.1016/j.energy.2012.03.036
  • Butler, R.G. 2001. Combustion chemistry of 1,3-cyclopentadiene. PhD thesis. Princeton University, Princeton, New Jersey.
  • Castaldi, M.J., Vincitore, A.M., and Senkan, S.M. 1995. Micro-structures of premixed hydrocarbon flames: methane. Combust. Sci. Technol., 107, 1–19. doi:10.1080/00102209508907792
  • Chernov, V., Thomson, M.J., Dworkin, S.B., Slavinskaya, N.A., and Riedel, U. 2014. Soot formation with C1 and C2 fuels using an improved chemical mechanism for PAH growth. Combust. Flame., 161, 592–601. doi:10.1016/j.combustflame.2013.09.017
  • Chetwittayachan, T., Shimazaki, D., and Yamamoto, K. 2002. A comparison of temporal variation of particle-bound polycyclic aromatic hydrocarbons (pPAHs) concentration in different urban environments: Tokyo, Japan, and Bangkok, Thailand. Atmos. Environ., 36, 2027–2037. doi:10.1016/S1352-2310(02)00099-7
  • Ciajolo, A., D’anna, A., Barbella, R., Tregrossi, A., and Violi, A. 1996. The effect of temperature on soot inception in premixed ethylene flames. Symp. (Int.) Combust., 26, 2327–2333. doi:10.1016/S0082-0784(96)80061-0
  • Cuoci, A., Frassoldati, A., Faravelli, T., Jin, H., Wang, Y., Zhang, K., Glarborg, P., and Qi, F. 2013. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames. Proc. Combust. Inst., 34, 1811–1818. doi:10.1016/j.proci.2012.05.085
  • Daido, S., Kodama, Y., Inohara, T., Ohyama, N., and Sugiyama, T. 2000. Analysis of soot accumulation inside diesel engines. JSAE Rev, 21, 303–308. doi:10.1016/S0389-4304(00)00048-5
  • Du, D., Axelbaum, R., and Law, C. 1991. The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Symp. (Int.) Combust., 23, 1501–1507. doi:10.1016/S0082-0784(06)80419-4
  • Dubey, A.K., Tezuka, T., Hasegawa, S., Nakamura, H., and Maruta, K. 2016. Study on sooting behavior of premixed C1–C4 n-alkanes/air flames using a micro flow reactor with a controlled temperature profile. Combust. Flame, 174, 100–110. doi:10.1016/j.combustflame.2016.09.007
  • Fischer, M., and Jiang, X. 2016. The chemical effects of CO2 addition to methane on aromatic chemistry. Fuel, 183, 386–395. doi:10.1016/j.fuel.2016.06.106
  • Fournet, R., Bauge, J., and Battin-Leclerc, F. 1999. Experimental and modeling of oxidation of acetylene, propyne, allene and 1, 3-butadiene. Int. J. Chem. Kinet., 31, 361–379. doi:10.1002/(ISSN)1097-4601
  • Frenklach, M., Yuan, T., and Ramachandra, M. 1987. Shock-tube and modeling study of soot formation in mixtures of hydrocarbons. J. Combust. Sci. Technol., 51, 265–270. doi:10.1080/00102208708960325
  • Goodwin, D.G., Moffat, H.K., and Speth, R.L. 2015. Cantera: An Object-oriented Software Toolkit for Chemical Kinetics. Thermodynamics, and Transport Processes.
  • Guo, H., and Smallwood, G.J. 2008. A numerical study on the influence of CO2 addition on soot formation in an ethylene/air diffusion flame. Combust. Sci. Technol., 180, 1695–1708. doi:10.1080/00102200802258072
  • Haynes, B.S., and Wagner, H.G. 1981. Soot formation. Prog. Energy Combust. Sci., 7, 229–273. doi:10.1016/0360-1285(81)90001-0
  • Howard, J.B. 1991. Carbon addition and oxidation reactions in heterogeneous combustion and soot formation. Symp. (Int.) Combust., 23, 1107–1127. doi:10.1016/S0082-0784(06)80371-1
  • İnal, F., and Senkan, S.M. 2002. Effects of oxygenate additives on polycyclic aromatic hydrocarbons (PAHs) and soot formation. Combust. Sci. Technol., 174, 1–19. doi:10.1080/00102200290021353
  • Jin, H., Cuoci, A., Frassoldati, A., Faravelli, T., Wang, Y., Li, Y., and Qi, F. 2014. Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol. Combust. Flame., 161, 657–670. doi:10.1016/j.combustflame.2013.10.020
  • Jin, H., Frassoldati, A., Wang, Y., Zhang, X., Zeng, M., Li, Y., Qi, F., Cuoci, A., and Faravelli, T. 2015. Kinetic modeling study of benzene and PAH formation in laminar methane flames. Combust. Flame., 162, 1692–1711. doi:10.1016/j.combustflame.2014.11.031
  • Kavouras, I.G., and Stephanou, E.G. 2002. Gas/particle partitioning and size distribution of primary and secondary carbonaceous aerosols in public buildings. Indoor Air, 12, 17–32.
  • Laskin, A., and Lifshitz, A. 1998. Thermal decomposition of indene. Experimental results and kinetic modeling. Symp. (Int.) Combust., 27, 313–320. doi:10.1016/S0082-0784(98)80418-9
  • Litzinger, T., Colket, M., Kahandawala, M., Katta, V., Lee, S.-Y., Liscinsky, D., McNesby, K., Pawlik, R., Roquemore, M., and Santoro, R. 2009. Fuel additive effects on soot across a suite of laboratory devices, part 1: ethanol. Combust. Sci. Technol., 181, 310–328. doi:10.1080/00102200802437445
  • Liu, F., Ai, Y., and Kong, W. 2014a. Effect of hydrogen and helium addition to fuel on soot formation in an axisymmetric coflow laminar methane/air diffusion flame. Int. J. Hydrogen Energy, 39, 3936–3946. doi:10.1016/j.ijhydene.2013.12.151
  • Liu, F., Consalvi, J.-L., and Fuentes, A. 2014b. Effects of water vapor addition to the air stream on soot formation and flame properties in a laminar coflow ethylene/air diffusion flame. Combust. Flame., 161, 1724–1734. doi:10.1016/j.combustflame.2013.12.017
  • Liu, F., Guo, H., Smallwood, G.J., and Gülder, Ö.L. 2001. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation. Combust. Flame., 125, 778–787. doi:10.1016/S0010-2180(00)00241-8
  • Marinov, N., Pitz, W., Westbrook, C., Castaldi, M., and Senkan, S. 1996. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combust. Sci. Technol., 116, 211–287. doi:10.1080/00102209608935550
  • Marinov, N., Pitz, W., Westbrook, C., Lutz, A., Vincitore, A., and Senkan, S. 1998. Chemical kinetic modeling of a methane opposed-flow diffusion flame and comparison to experiments. Symp. (Int.) Combust., 27, 605–613. doi:10.1016/S0082-0784(98)80452-9
  • Melton, T.R., Vincitore, A.M., and Senkan, S.M. 1998. The effects of equivalence ratio on the formation of polycyclic aromatic hydrocarbons and soot in premixed methane flames. Symp. (Int.) Combust., 27, 1631–1637. doi:10.1016/S0082-0784(98)80001-5
  • Narayanaswamy, K., Blanquart, G., and Pitsch, H. 2010. A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame., 157, 1879–1898. doi:10.1016/j.combustflame.2010.07.009
  • Raj, A., Celnik, M., Shirley, R., Sander, M., Patterson, R., West, R., and Kraft, M. 2009. A statistical approach to develop a detailed soot growth model using PAH characteristics. Combust. Flame., 156, 896–913. doi:10.1016/j.combustflame.2009.01.005
  • Raj, A., Prada, I.D.C., Amer, A.A., and Chung, S.H. 2012. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combust. Flame., 159, 500–515. doi:10.1016/j.combustflame.2011.08.011
  • Rezgui, Y., and Guemini, M. 2014. Effect of ethanol addition on soot precursors emissions during benzene oxidation in a jet-stirred reactor. Environ. Sci. Pollut. Res., 21, 6671–6686. doi:10.1007/s11356-014-2582-8
  • Richter, H., Granata, S., Green, W.H., and Howard, J.B. 2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc. Combust. Inst., 30, 1397–1405. doi:10.1016/j.proci.2004.08.088
  • Richter, H., and Howard, J.B. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways. Prog. Energy Combust. Sci., 26, 565–608. doi:10.1016/S0360-1285(00)00009-5
  • Roberts, C.E., Naegeli, D., and Chadwell, C. 2005. The effect of water on soot formation chemistry. SAE Technical Paper. Report no. 0148-7191.
  • Robinson, R., and Lindstedt, R. 2011. On the chemical kinetics of cyclopentadiene oxidation. Combust. Flame., 158, 666–686. doi:10.1016/j.combustflame.2010.12.001
  • Senkan, S., and Castaldi, M. 1996. Formation of polycyclic aromatic hydrocarbons (PAH) in methane combustion: comparative new results from premixed flames. Combust. Flame., 107, 141–150. doi:10.1016/0010-2180(96)00044-2
  • Siegmann, K., and Sattler, K. 2000. Formation mechanism for polycyclic aromatic hydrocarbons in methane flames. J. Chem. Phys., 112, 698–709. doi:10.1063/1.480648
  • Slavinskaya, N.A., and Frank, P. 2009. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combust. Flame., 156, 1705–1722. doi:10.1016/j.combustflame.2009.04.013
  • Slavinskaya, N.A., Riedel, U., Dworkin, S.B., and Thomson, M.J. 2012. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Combust. Flame., 159, 979–995. doi:10.1016/j.combustflame.2011.10.005
  • Song, K.H., Nag, P., Litzinger, T.A., and Haworth, D.C. 2003. Effects of oxygenated additives on aromatic species in fuel-rich, premixed ethane combustion: a modeling study. Combust. Flame., 135, 341–349. doi:10.1016/S0010-2180(03)00180-9
  • V.A. Grigoriev, V.M.Z.E. 1982. Heat and Mass transfer. Thermotechnical Experiment, Reference Book. Energoisdat Publishing House, Moscow.
  • Wang, H., and Frenklach, M. 1997. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust. Flame., 110, 173–221. doi:10.1016/S0010-2180(97)00068-0
  • Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Law, C.K., and Version, I.I.U.M. 2007. High-temperature combustion reaction model of H2. CO/C1-C4 Compounds. Report no.
  • Wang, Y., and Chung, S.H. 2016. Formation of soot in counterflow diffusion flames with carbon dioxide dilution. Combust. Sci. Technol., 188, 805–817. doi:10.1080/00102202.2016.1139388
  • Wu, J., Song, K.H., Litzinger, T., Lee, S.-Y., Santoro, R., Linevsky, M., Colket, M., and Liscinsky, D. 2006. Reduction of PAH and soot in premixed ethylene–air flames by addition of ethanol. Combust. Flame., 144, 675–687. doi:10.1016/j.combustflame.2005.08.036
  • Yoon, S., Anh, D., and Chung, S. 2008. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation. Combust. Flame., 154, 368–377. doi:10.1016/j.combustflame.2008.04.019
  • Zhang, Y., Wang, L., Liu, P., Guan, B., Ni, H., Huang, Z., and Lin, H. 2018. Experimental and kinetic study of the effects of CO2 and H2O addition on PAH formation in laminar premixed C2H4/O2/Ar flames. Combust. Flame., 192, 439–451. doi:10.1016/j.combustflame.2018.01.050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.