238
Views
11
CrossRef citations to date
0
Altmetric
Articles

Self-hardening thermoplastic foam for the inhibition of coal oxidation at low temperatures

, , , , , & show all
Pages 1942-1959 | Received 21 Aug 2018, Accepted 21 Oct 2018, Published online: 02 Nov 2018

References

  • Arisoy, A., and Akgün, F. 2000. Effect of pile height on spontaneous heating of coal stockpiles. Combust. Sci. Technol., 153(1), 157–168. doi:10.1080/00102200008947257.
  • Beamish, B.B. 2005. Comparison of the R-70 self-heating rate of New Zealand and Australian coals to Suggate rank parameter. Int. J. Coal Geol., 64, 139–144. doi:10.1016/j.coal.2005.03.012.
  • Beamish, B.B., Barakat, M.A., and George, J.D.S. 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. Int. J. Coal Geol., 45, 217–224. doi:10.1016/S0166-5162(00)00034-3.
  • Carras, J.N., and Young, B.C. 1994. Self-heating of coal and related materials: models, application and test methods. Prog. Energy Combust. Sci., 20(1), 1–15. doi:10.1016/0360-1285(94)90004-3.
  • Cheng, W.M., Hu, X.M., Xie, J., and Zhao, Y.Y. 2017a. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. Fuel, 210, 826–835. doi:10.1016/j.fuel.2017.09.007.
  • Cheng, W.M., Hu, X.M., Zhao, Y.Y***., Wu, M.Y., Hu, Z.X., and Yu, X.T. 2017b. Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels. e-Polymers, 1: 95–106.
  • Clemens, A.H., Matheson, T.W., and Rogers, D.E. 1991. Low temperature oxidation studies of dried New Zealand coals. Fuel, 70, 215–221. doi:10.1016/0016-2361(91)90155-4.
  • Deng, J., Yang, Y., and Tang, K. 2014. Research on preparation and fire extinguishing performance of temperature-sensitive hygrogel. J. China Univ. Mining Technol., 43, 1–7. (in Chinese).
  • Fierro, V., Miranda, J.L., Romero, C., Andre´S, J.M., Arriaga, A., and Schmal, D. 2001. Model predictions and experimental results on self-heating prevention of stockpiled coals. Fuel, 80, 125–134. doi:10.1016/S0016-2361(00)00062-4.
  • Green, U., Keinan-Adamsky, K., Attia, S., Aizenshtat, Z., Goobes, G., Ruthstein, S., and Cohen, H. 2014. Elucidating the role of stable carbon radicals in the low temperature oxidation of coals by coupled EPR-NMR spectroscopy-a method to characterize surfaces of porous carbon materials. Phys. Chem. Chem. Phys. Pccp, 16, 9364–9370. doi:10.1039/c4cp00791c.
  • Havesteen, B.H. 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 96, 67–202. doi:10.1016/S0163-7258(02)00298-X.
  • Hu, Z.X., Hu, X.M., Cheng, W.M., and Lu, W. 2018. Influence of synthetic conditions on the performance of melamine–phenol–formaldehyde resin microcapsules. High Performance Polymers. doi:10.1177/0954008318758489.
  • Huang, M.H., Dunn, B.S., and Zink, J.I. 2000. In situ luminescence probing of the chemical and structural changes during formation of dip-coated lamellar phase sodium dodecyl sulfate sol-gel thin films. J. Am. Chem. Soc., 122, 3739–3745. doi:10.1021/ja993882e.
  • Itay, M., Hill, C., and Glasser, D. 1989. A study of the low temperature oxidation of coal. Fuel Process. Technol., 21, 81–97. doi:10.1016/0378-3820(89)90063-5.
  • Kam, A.Y., Hixson, A.N., and Perlmutter, D.D. 1973. The oxidation of bituminous coal-I development of a mathematical model. Chem. Eng. Sci., 6(1), 815–819.
  • Kam, A.Y., Hixson, A.N., and Perlmutter, D.D. 1976. The oxidation of bituminous coal-II experimental kinetics and interpretation. Chem. Eng. Sci., 31, 821–834. doi:10.1016/0009-2509(76)80056-5.
  • Karsner, G.G., and Perlmutter, D.D. 1982. Model for coal oxidation kinetics. 1. Reaction under chemical control. Fuel, 61, 29–34. doi:10.1016/0016-2361(82)90289-7.
  • Kelemen, S.R., and Freund, H. 1988. XPS characterization of glassy-carbon surfaces oxidized by O2, CO2, and HNO3. Energy & Fuels, 2, 111–118. doi:10.1021/ef00008a001.
  • Kilau, H.W. 1990. The Influence of Sulfate Ion on the Coal-Wetting Performance of Anionic Surfactants, US Department of the Interior, Bureau of Mines, Washington, DC.
  • Kilau, H.W., and Voltz, J.I. 1991. Synergistic wetting of coal by aqueous solutions of anionic surfactant and polyethylene oxide polymer. Colloids and Surfaces, 57, 17–39. doi:10.1016/0166-6622(91)80177-P.
  • Kim, A.G., and Kociban, A.M. 1994. Cryogenic slurry method to extinguish waste bank fires. Proc. Am. Soc. Mining Reclam., 4, 129–138. doi:10.21000/JASMR94040129.
  • Krishnaswamy, S., Bhat, S., Gunn, R.D., and Agarwal, P.K. 1996a. Low-temperature oxidation of coal. 1. A single-particle reaction–diffusion model. Fuel, 75, 333–343. doi:10.1016/0016-2361(95)00180-8.
  • Krishnaswamy, S., Gunn, R.D., and Agarwal, P.K. 1996b. Low-temperature oxidation of coal. 2. An experimental and modelling investigation using a fixed-bed isothermal flow reactor. Fuel, 75, 344–352. doi:10.1016/0016-2361(95)00177-8.
  • Kudynska, J., and Buckmaster, H.A. 1996. Low-temperature oxidation kinetics of high-volatile bituminous coal studied by dynamic in situ 9 GHz c.w.e.p.r, spectroscopy. Fuel, 75, 872–878. doi:10.1016/0016-2361(96)00014-2.
  • Kudynska, J., Buckmaster, H.A., Duczmal, T., Bachelor, F.W., and Majumdar, A. 1992. Dynamic in situ 9 GHz c.w.-e.p.r. low-temperature oxidation study of selected Alberta coals: 1. Comparison of an hv bituminous and a subbituminous coal. Fuel, 71, 1127–1135. doi:10.1016/0016-2361(92)90093-4.
  • Kuenzer, C., and Stracher, G.B. 2012. Geomorphology of coal seam fires. Geomorphology, 138, 209–222. doi:10.1016/j.geomorph.2011.09.004.
  • Kuenzer, C., Zhang, J., Tetzlaff, A., van Dijk, P., Voigt, S., Mehl, H., and Wagner, W. 2007. Uncontrolled coal fires and their environmental impacts: investigating two aridmining regions in north-central China. Appl. Geogr., 27(1), 42–62. doi:10.1016/j.apgeog.2006.09.007.
  • Li, Z.H. 1996. Mechanism of free radical reactions in spontaneous combustion of coal. J. China Univ. Mining Technol., 25: 111–114.
  • Li, Z.H., Kong, B., Wei, A.Z., Yang, Y.L., Zhou, Y.B., and Zhang, L.Z. 2016. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res., 23, 23593–23605. doi:10.1007/s11356-016-7589-x.
  • Liang, Y.C., Liang, H.D., and Zhu, S.Q. 2014. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China. Atmos. Environ., 83(3), 176–184. doi:10.1016/j.atmosenv.2013.09.001.
  • Liotta, R., Brons, G., and Lsaacs, J. 1983. Oxidative weathering of Illinois No. 6 coal. Fuel, 62, 781–791. doi:10.1016/0016-2361(83)90028-5.
  • Liu, J.X., Jiang, X.M., Shen, J., and Zhang, H. 2014. Chemical properties of superfine pulverized coal particles. Part 1.Electron paramagnetic resonance analysis of free radical characteristics. Adv. Powder Technol., 25, 916–925. doi:10.1016/j.apt.2014.01.021.
  • Lopez, D., Sanada, Y., and Mondragon, F. 1998. Effect of low-temperature oxidation of coal on hydrogen-transfer capability. Fuel, 77, 1623–1628. doi:10.1016/S0016-2361(98)00086-6.
  • Moghtaderi, B., Dlugogorski, B.Z., and Kennedy, E.M. 2000. Effects of wind flow on self-heating characteristics of coal stockpiles. Process. Saf. Environ. Prot., 78(6), 445–453. doi:10.1205/095758200530998.
  • Mohalik, N.K., Singh, R.V.K., Pandey, J., and Singh, V.K. 2005. Application of nitrogen as preventive and controlling subsurface fire-Indian context. J. Sci. Ind. Res., 64: 273–280.
  • Mohalik, N.K., Singh, R.V.K., Pandey, J., and Singh, V.K. 2009. Application of carbon dioxide (CO2) for controlling subsurface fire area: indian context. J. Mining Sci., 45, 390–397. doi:10.1007/s10913-009-0049-y.
  • Qin, B.T., Dou, G.L., Wang, Y., Xin, H.H., Ma, L.Y., and Wang, D.M. 2017. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel, 190, 129–135. doi:10.1016/j.fuel.2016.11.045.
  • Shi, T., Wang, X., Deng, J., and Wen, Z. 2005. The mechanism at the initial stage of the room temperature oxidation of coal. Combust. Flame, 140(4), 332–345. doi:10.1016/j.combustflame.2004.10.012.
  • Smith, A.C., Miron, Y., and Lazzara, C.P. 1988. Inhibition of spontaneous combustion of coal. Report of Investigation-USA Bureau of Mines, Missing.
  • Sokol, E.V. 2005. High-temperature processes of organic fuel decomposition as a thermal source for pyrometamorphic transformations. In Lepezin, G.G. (Ed.), Combustion Metamorphism, Publishing House of the Siberian Branch of Russian Academy of Sciences, Novosybirsk, Russian.
  • Sujanti, W., and Zhang, D.K. 1999. A laboratory study of spontaneous combustion of coal: the influence of inorganic matter and reactor size. Fuel, 78, 549–556. doi:10.1016/S0016-2361(98)00188-4.
  • Swann, P.D., Allardice, D.J., and Evans, D.G. 1974. Low-temperature oxidation of brown coal.1. Changes in internal surface due to oxidation. Fuel, 53(2), 85–87. doi:10.1016/0016-2361(74)90060-X.
  • Tang, Y.B. 2018. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal. J. Energy Inst.. doi:10.1016/j.joei.2017.06.006.
  • Taraba, B., and Michalec, Z. 2011. Effect of longwall face advance rate on spontaneous heating process in the gob area-CFD modelling. Fuel, 90, 2790–2797. doi:10.1016/j.fuel.2011.03.033.
  • Taraba, B., Peter, R., and Slovák, V. 2011. Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Process. Technol., 92, 712–715. doi:10.1016/j.fuproc.2010.12.003.
  • Vinogradov, A.V., Kuprin, D.S., Abduragimov, I.M., Kuprin, G.N., Serebriyakov, E., and Vinogradov, V.V. 2016. Silica foams for fire prevention and firefighting. ACS Appl. Mater Interfaces, 8, 294–301. doi:10.1021/acsami.5b08653.
  • Wang, B., Peng, Y., and Vink, S. 2013. Diagnosis of the surface chemistry effects on fine coal flotation using saline water. Energy & Fuels, 27, 4869−4874. doi:10.1021/ef400909r.
  • Wang, D.M., Dou, G.L., Zhong, X.X., Xin, H.H., and Qin, B.T. 2014. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel, 117, 218–223. doi:10.1016/j.fuel.2013.09.070.
  • Wang, D.M., Xin, H.H., Qi, X.Y., Dou, G.L., Qi, G.S., and Ma, L.Y. 2016a. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics. Combust. Flame, 163, 447–460. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, G., Yan, G.Q., Zhang, X.H., Du, W.Z., Huang, Q.M., Sun, L.L., and Zhang, X.Q. 2016b. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine. J. Loss Prev. . Ind., 44, 474–486. doi:10.1016/j.jlp.2016.10.013.
  • Wang, H., Dlugogorski, B.Z. and Kennedy E.M. 2002. Kinetic modeling of low-temperature oxidation of coal. Combust. Flame, 131, 452–464. doi:10.1016/S0010-2180(02)00416-9.
  • Wang, H.H., Dlugogorski, B.Z., and Kennedy, E.M. 2003. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modeling. Prog. Energy Combust. Sci., 29, 487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, L.Y., Xu, Y.L., Jiang, S.G., Yu, M.G., Chu, T.X., Zhang, W.Q., Wu, Z.Y., and Kou, L.W. 2012. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Saf. Sci., 50, 1528–1534. doi:10.1016/j.ssci.2012.03.006.
  • Wen, H., Xu, J.C., Deng, J., and Zhang, X.H. 2004. Fire control system and its application technology of multifunctional grouting and gel for governing seam spontaneous combustion. Coal Eng., 5, 4–6. (in Chinese).
  • Xi, Z.L. 2017. Experimental investigation of the innovative foaming device using gas as the sole power for firefighting. Process. Saf. Prog., 36, 150–157. doi:10.1002/prs.11834.
  • Xi, Z.L., Li, D., and Feng, Z.Y. 2017. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion. Fuel, 206, 334–341. doi:10.1016/j.fuel.2017.06.022.
  • Xi, Z.L., Li, J., and Fan, B.Q. 2015. Experimental study on the characteristics of static coal dust suppression by foam-sol and its application. J. China Coal Soc., 40, 126–131.
  • Xi, Z.L., and Sun, X.T. 2016. Effectiveness of thermoplastic powder to retard self-heating and spontaneous combustion of coal. Combust. Sci. Technol., 188, 1331–1344. doi:10.1080/00102202.2016.1190346.
  • Xia, W.C., and Li, Y.F. 2016. Role of roughness change on wettability of taixi anthracite coal surface before and after the Heating Process. Energy & Fuels, 30, 281−284. doi:10.1021/acs.energyfuels.5b02621.
  • Yan, H., Zhang, Z.D., Kan, Y., Liu, L.Y., and Zhang, H. 2014. Study on rheology of PEO/SiO2 aqueous solution. Meas. Techniquel, 7, 3–6. (in Chinese).
  • Yang**, Y., Li, Z., Tang, Y., Liu, Z., and Ji, H. 2014. Fine coal covering for preventing spontaneous combustion of coal pile. Nat. Hazards, 74(2),603–622. doi: 10.1007/s11069-014-1203-7.
  • Zhan, J., Wang, H.H., Song, S.N., Hu, Y., and Li, J. 2011. Role of an additive in retarding coal oxidation at moderate temperatures. Proc. Combustion Inst., 33, 2515–2522. doi:10.1016/j.proci.2010.06.046.
  • Zhang, L.J., Li, Z.H., Yang, Y.L., Zhou, Y.B., Kong, B., Li, J.H., and Si, L.L. 2016. Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal. Fuel, 184, 418–429. doi:10.1016/j.fuel.2016.07.002.
  • Zhong, X.X., Qin, B.T., Dou, G.L., Xia, C., and Wang, F. 2018. A chelated calcium-procyanidine-attapulgite composite inhibitor for the suppression of coal oxidation. Fuel, 217, 680–688. doi:10.1016/j.fuel.2017.12.072.
  • Zhou, F.B., Ren, W.X., Wang, D.M., Song, T.L., Li, X., and Zhang, Y.L. 2006. Application of three-phase foam to fight an extraordinarily serious coal mine fire. Int. J. Coal Geol., 67, 95–100. doi:10.1016/j.coal.2005.09.006.
  • Zhu, H.Q., Song, Z.Y., Tan, B., and Hao, Y.Z. 2013. Numerical investigation and theoretical prediction of self-ignition characteristics of coarse coal stockpiles. J. Loss Prev. . Ind., 26(1), 236–244. doi:10.1016/j.jlp.2012.11.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.