253
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of Obstacles on Flame Propagation Characteristics of Corn Starch Dust

, , , , , , & show all
Pages 2006-2019 | Received 13 Jun 2018, Accepted 26 Oct 2018, Published online: 04 Dec 2018

References

  • Amyotte, P.R. 2006. Solid inertants and their use in dust explosion prevention and mitigation. J. Loss Prev. Process Ind., 19(2), 161–173.
  • Benedetto, A.D., Russo, P., Amyotte, P., and Marchand, N. 2010. Modelling the effect of particle size on dust explosions. Chem. Eng. Sci., 65(2), 772–779. doi:10.1016/j.ces.2009.09.029
  • Chen, X.F., Zhang, H.M., Chen, X., Liu, X.Y., Niu, Y., Zhang, Y., and Yuan, B.H. 2017. Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution. J. Loss Prev. Process Ind., 49, 905–911. doi:10.1016/j.jlp.2017.02.012
  • Chen, X.F., Zhao, Q., Dai, H.M., Yin, S.H., He, S., Zhang, Y., Wang, X., and Yuan, B.H. 2018. Effect of metal mesh on the flame propagation characteristics of wheat starch dust. J. Loss Prev. Process Ind., 55, 107–112. doi:10.1016/j.jlp.2018.06.005
  • Ciccarelli, G., Johansen, C., and Parravani, M. 2011. Transition in the propagation mechanism during flame acceleration in porous media. P. Combust Inst., 33(2), 2273–2278. doi:10.1016/j.proci.2010.07.082
  • Dai, H.M., Zhao, Q., Lin, B.Q., He, S., Chen, X.F., Zhang, Y., Niu, Y., and Yin, S.H. 2018. Premixed combustion of low-concentration coal mine methane with water vapor addition in a two-section porous media burner. Fuel, 213, 72–82. doi:10.1016/j.fuel.2017.09.123
  • Frank, W.L. 2004. Dust explosion prevention and the critical importance of housekeeping. Process Saf. Prog., 23(3), 175–184. doi:10.1002/prs.10033
  • Gao, W., Mogi, T., Sun, J., and Dobashi, R. 2013a. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber. Fuel, 113(2), 86–96. doi:10.1016/j.fuel.2013.05.071
  • Gao, W., Mogi, T., Sun, J., Yu, J.L., and Dobashi, R. 2013b. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions. Powder Technol., 249(249), 168–174.
  • Gao, W., Mogi, T., Yu, J.L., Yan, X.Q., Sun, J.H., and Dobashi, R. 2015. Flame propagation mechanisms in dust explosions. J. Loss Prev. Process Ind., 36, 186–194. doi:10.1016/j.jlp.2014.12.021
  • Han, O.S., Yashima, M., Matsuda, T., Matsui, H., Miyake, A., and Ogawa, T. 2000. Behavior of flames propagating through lycopodium dust clouds in a vertical duct. J. Loss Prev. Process Ind., 13(6), 449–457. doi:10.1016/S0950-4230(99)00072-8
  • Kosinski, P. 2008. Numerical investigation of explosion suppression by inert particles in straight ducts. J. Hazard. Mater., 154(1–3), 981–991. doi:10.1016/j.jhazmat.2007.11.002
  • Nie, B.S., He, X.Q., Zhang, R.M., Chen, W.X., and Zhang, J.F. 2011. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. J. Hazard. Mater., 192(2), 741–747. doi:10.1016/j.jhazmat.2011.05.083
  • Ogawa, T., Gamezo, V.N., and Oran, E.S. 2013. Flame acceleration and transition to detonation in an array of square obstacles. J. Loss Prev. Process Ind., 26(2), 355–362. doi:10.1016/j.jlp.2011.12.009
  • Porowski, R., and Teodorczyk, A. 2013. Experimental study on DDT for hydrogen–methane–air mixtures in tube with obstacles. J. Loss Prev. Process Ind., 26(2), 374–379. doi:10.1016/j.jlp.2012.06.004
  • Proust, C. 2006. A few fundamental aspects about ignition and flame propagation in dust clouds. J. Loss Prev. Process Ind., 19(2), 104–120. doi:10.1016/j.jlp.2005.06.035
  • Radulescu, M.I., and Lee, J.H.S. 2002. The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame, 131(1–2), 29–46. doi:10.1016/S0010-2180(02)00390-5
  • Skjold, T., and Eckhoff, R.K. 2016. Dust explosions in the process industries: research in the twenty-first century. Chem. Eng. Trans., 48, 337–342.
  • Sun, J.H., Dobashi, R., and Hirano, T. 2006. Structure of flames propagating through aluminum particles cloud and combustion process of particles. J. Loss Prev. Process Ind., 19(6), 769–773. doi:10.1016/j.jlp.2006.01.002
  • Wang, C., Huang, F., Addai, E.K., and Dong, X. 2016. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture. J. Loss Prev. Process Ind., 43, 302–310. doi:10.1016/j.jlp.2016.05.021
  • Yi, Y., He, X.Q., Geng, L., and Wang, H. 2011. Effect of meshy obstacle on methane gas explosion. Procedia Eng., 26, 70–74. doi:10.1016/j.proeng.2011.11.2141
  • Yu, J.L., Zhang, X.Y., Zhang, Q., Wang, L.B., Ji, K., Peng, L., and Gao, W. 2016a. Combustion behaviors and flame microstructures of micro- and nano-titanium dust explosions. Fuel, 181, 785–792. doi:10.1016/j.fuel.2016.05.085
  • Yu, M.G., Zheng, K., and Chu, T.X. 2016b. Gas explosion flame propagation over various hollow-square obstacles. J. Nat. Gas Sci. Eng., 30, 221–227. doi:10.1016/j.jngse.2016.02.009
  • Zhang, D., Nie, B.S., Wang, C., Zhao, F., Guo, J.H., Liu, X.N., Li, H.L., and Zhang, C. 2011. Preliminary research on porous foam ceramics against gas explosions in goaf. Procedia Eng., 26(4), 1330–1336. doi:10.1016/j.proeng.2011.08.246
  • Zhang, H.M., Chen, X.F., Xie, T., Yuan, B.H., Dai, H.M., He, S., and Liu, X.Y. 2018. Effects of reduced oxygen levels on flame propagation behaviors of starch dust deflagration. J. Loss Prev. Process Ind., 54, 146–152. doi:10.1016/j.jlp.2018.03.011
  • Zhang, H.M., Chen, X.F., Zhang, Y., Niu, Y., Yuan, B.H., Dai, H.M., and He, S. 2017. Effects of particle size on flame structures through corn starch dust explosions. J. Loss Prev. Process Ind., 50, 7–14. doi:10.1016/j.jlp.2017.09.002
  • Zhang, X.Y., Yu, J.L., Yan, X.Q., Xie, Q.F., and Gao, W. 2016. Flame propagation behaviors of nano- and micro-scale PMMA dust explosions. J. Loss Prev. Process Ind., 40, 101–111. doi:10.1016/j.jlp.2015.12.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.