192
Views
1
CrossRef citations to date
0
Altmetric
Articles

An Experimental and Detailed Chemical Kinetic Investigation of the Addition of C2 Oxygenated Species in Rich Ethylene Premixed Flames

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 2112-2135 | Received 29 Jun 2018, Accepted 07 Nov 2018, Published online: 20 Dec 2018

References

  • Agarwal, A.K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci., 33(3), 233–271. doi:10.1016/j.pecs.2006.08.003
  • Battin-Leclerc, F., Blurock, E., Bounaceur, R., Fournet, R., Glaude, P.-A., Herbinet, O., … Warth, V. 2011. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chem. Soc. Rev., 40(9), 4762. doi:10.1039/c0cs00207k
  • Bhargava, A., and Westmoreland, P.R. 1998. MBMS analysis of a fuel-lean ethylene flame. Combust. Flame, 115(4), 456–467. doi:10.1016/S0010-2180(98)00018-2
  • Christensen, M., Abebe, M.T., Nilsson, E.J.K., and Konnov, A.A. 2015. Kinetics of premixed acetaldehyde+air flames. Proc. Combust. Inst., 35(1), 499–506. doi:10.1016/j.proci.2014.06.136
  • Christensen, M., and Konnov, A.A. 2016. Laminar burning velocity of acetic acid + air flames. Combust. Flame, 170, 12–29. doi:10.1016/j.combustflame.2016.05.007
  • COSILAB (2010) User manual, Rotexo
  • Detilleux, V., and Vandooren, J. 2009. Experimental study and kinetic modeling of benzene oxidation in one-dimensional laminar premixed low-pressure flames. Combust. Explosion, and Shock Waves, 45(4), 392–403. doi:10.1007/s10573-009-0049-x
  • Detilleux, V., and Vandooren, J. 2011. Experimental and kinetic modeling investigation of toluene combustion in premixed, one-dimensional and laminar toluene-oxygen-argon flames. Proc. Combust. Inst., 33(1), 217–224. doi:10.1016/j.proci.2010.06.151
  • Dias, V., and Vandooren, J. 2011. Experimental and modeling studies of C2H4/O2/Ar, C2H4/methylal/O2/Ar and C2H4/ethylal/O2/Ar rich flames and the effect of oxygenated additives. Combust. Flame, 158(5), 848–859. doi:10.1016/j.combustflame.2011.01.015
  • Elwardany, A., Nasir, E.F., Es-Sebbar, E., and Farooq, A. 2015. ScienceDirect unimolecular decomposition of formic and acetic acids : A shock tube/laser absorption study. Proc. Combust. Inst., 35(1), 429–436. doi:10.1016/j.proci.2014.06.141
  • Frenklach, M. 2002. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys., 4(11), 2028–2037. doi:10.1039/b110045a
  • Gautam, M.D.W., Martin, I.I., and Carder, D. 2000. Emissions characteristics of higher alcohol/gasoline blends. Proc. Inst. Mech. Eng. A: J. Power Energy, 214(2), 165–182. doi:10.1243/0957650001538263
  • Gerasimov, I.E., Knyazkov, D.A., Yakimov, S.A., Bolshova, T.A., Shmakov, A.G., and Korobeinichev, O.P. 2012a. Effect of ethanol on the chemistry of formation of precursors of polyaromatic hydrocarbons in a fuel-rich ethylene flame at atmospheric pressure. Combust. Explosion, and Shock Waves, 48(6), 661–676. doi:10.1134/S0010508212060019
  • Gerasimov, I.E., Knyazkov, D.A., Yakimov, S.A., Bolshova, T.A., Shmakov, A.G., and Korobeinichev, O.P. 2012b. Structure of atmospheric-pressure fuel-rich premixed ethylene flame with and without ethanol. Combust. Flame, 159(5), 1840–1850. doi:10.1016/j.combustflame.2011.12.022
  • Giakoumis, E.G., Rakopoulos, C.D., Dimaratos, A.M., and Rakopoulos, D.C. 2013. Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review. Renewable Sustainable Energy Rev., 17, 170–190. doi:10.1016/j.rser.2012.09.017
  • Kee, R.J., Rupley, F.M., and Miller, J.A. 1992. PREMIX: One-Dimensional Premixed Laminar Flame Code, CHEMKIN- II Version 2.5b, Sandia Laboratories, Livermore, CA, USA.
  • Leplat, N., Dagaut, P., Togbé, C., and Vandooren, J. 2011. Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combust. Flame, 158(4), 705–725. doi:10.1016/j.combustflame.2010.12.008
  • Leplat, N., Seydi, A., and Vandooren, J. 2008. An experimental study of the structure of a stoichiometric ethanol/oxygen/argon flame. Combust. Sci. Technol., 180(3), 519–532. doi:10.1080/00102200701741467
  • Leplat, N., and Vandooren, J. 2010. Experimental investigation and numerical simulation of the structure of CH3CHO/O2/Ar flames at different equivalence ratios. Combust. Sci. Technol., 182(4–6), 436–448. doi:10.1080/00102200903462813
  • Leplat, N., and Vandooren, J. 2012. Numerical and experimental study of the combustion of acetic acid in laminar premixed flames. Combust. Flame, 159(2), 493–499. doi:10.1016/j.combustflame.2011.08.007
  • Lindstedt, R.P., and Skevis, G. 2000. Molecular growth and oxygenated species formation in laminar ethylene flames. Proc. Combust. Inst., 28(2), 1801–1807. doi:10.1016/S0082-0784(00)80582-2
  • Mackie, J.C., and Doolan, K.R. 1984. High-temperature kinetics of thermal decomposition of acetic acid and its products. Int. J. Chem. Kinet., 16, 525–541. doi:10.1002/kin.550160504
  • Matsugi, A., and Miyoshi, A. 2014. Yield of formyl radical from the vinyl + O2 reaction. Int. J. Chem. Kinet., 46(5), 260–274. doi:10.1002/kin.20823
  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J. 2013. A hierarchical and comparative kinetic modeling study of C1- C2hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 45(10), 638–675. doi:10.1002/kin.20802
  • Mével, R., Chatelain, K., Blanquart, G., and Shepherd, J.E. 2018. An updated reaction model for the high-temperature pyrolysis and oxidation of acetaldehyde. Fuel, 217(January), 226–239. doi:10.1016/j.fuel.2017.12.060
  • Miyamoto, N., Ogawa, H., Nurun, N.M., Obata, K., and Arima, T. 1998. Smokeless, low NOx, high thermal efficiency, and low noise diesel combustion with oxygenated agents as main fuel. SAE Int., doi:10.4271/980506
  • Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., and Kyritsis, D.C. 2010. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed di diesel engine. Energy Convers. Manag., 51(10), 1989–1997. doi:10.1016/j.enconman.2010.02.032
  • Salooja, K.C. 1966. Studies of combustion processes leading to ignition of some oxygen derivatives of hydrocarbons. Combust. Flame, 10(1), 11–21. doi:10.1016/0010-2180(66)90022-8
  • Sarathy, S.M., Oßwald, P., Hansen, N., and Kohse-Höinghaus, K. 2014. Alcohol combustion chemistry. Prog. Energy Combust. Sci., 44, 40–102. doi:10.1016/j.pecs.2014.04.003
  • Suarez-Bertoa, R., Clairotte, M., Arlitt, B., Nakatani, S., Hill, L., Winkler, K., … Astorga, C. 2017. Intercomparison of ethanol, formaldehyde and acetaldehyde measurements from a flex-fuel vehicle exhaust during the WLTC. Fuel, 203, 330–340. doi:10.1016/j.fuel.2017.04.131
  • Vourliotakis, G., Skevis, G., and Founti, M.A. 2011. A detailed kinetic modeling study of benzene oxidation and combustion in premixed flames and ideal reactors. Energy and Fuels, 25(5), 1950–1963. doi:10.1021/ef101712p
  • Vourliotakis, G., Skevis, G., and Founti, M.A. 2015. Some aspects of combustion chemistry of C1–C2 oxygenated fuels in low pressure premixed flames. Proc. Combust. Inst., 35, 437–445. doi:10.1016/j.proci.2014.06.060
  • Westbrook, C.K., Pitz, W.J., and Curran, H.J. 2006. Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. J. Phys. Chem. A, 110(21), 6912–6922. doi:10.1021/jp056362g
  • Xu, C., and Konnov, A.A. 2012. Validation and analysis of detailed kinetic models for ethylene combustion. Energy, 43(1), 19–29. doi:10.1016/j.energy.2011.11.006
  • Xu, H., Yao, C., Xu, G., Wang, Z., and Jin, H. 2013. Experimental and modelling studies of the effects of methanol and ethanol addition on the laminar premixed low-pressure n-heptane/toluene flames. Combust. Flame, 160(8), 1333–1344. doi:10.1016/j.combustflame.2013.02.018
  • Yakimov, S.A., Knyaz’kov, D.A., Bol’shova, T.A., Shmakov, A.G., Korobeinichev, O.P., and Qi, F. 2012. Investigation of the effect of ethanol additives on the structure of low-pressure ethylene flames by photoionization mass spectrometry. Combust. Explosion, and Shock Waves, 48(5), 609–619. doi:10.1134/S0010508212050127
  • Zervas, E., Montagne, X., and Lahaye, J. 2001. C1 - C5 organic acid emissions from an SI engine: influence of fuel and air/fuel equivalence ratio. Environ. Sci. Technol., 35(13), 2746–2751. doi:10.1021/es000237v
  • Zervas, E., Montagne, X., and Lahaye, J. 2004a. Influence of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a Si engine. 1. Experimental findings. Fuel, 83(17–18), 2301–2311. doi:10.1016/j.fuel.2004.06.029
  • Zervas, E., Montagne, X., and Lahaye, J. 2004b. Influence of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a SI engine. 2. Formation pathways and modelling of combustion processes. Fuel, 83(17–18), 2313–2321. doi:10.1016/j.fuel.2004.06.028
  • Zhang, H.R., Eddings, E.G., Sarofim, A.F., and Westbrook, C.K. 2009. Fuel dependence of benzene pathways. Proc. Combust. Inst., 32 I(1), 377–385. doi:10.1016/j.proci.2008.06.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.