430
Views
17
CrossRef citations to date
0
Altmetric
Articles

Numerical and Experimental Investigation of the Channel Expansion of a Low-Energy Spark in the Air

ORCID Icon, , , & ORCID Icon
Pages 2136-2161 | Received 25 Jun 2018, Accepted 12 Nov 2018, Published online: 20 Dec 2018

References

  • Banks, P. 1966. Collision frequencies and energy transfer: ions. Planet. Space Sci., 1105. doi:10.1016/0032-0633(66)90025-0.
  • Bradley, D., and Lung, F.-K.-K. 1987. Spark ignition and the early stages of turbulent flame propagation. Combust. Flame, 69, 71. doi: 10.1016/0010-2180(87)90022-8.
  • Braginskii, S.I. 1958. Theory of the development of a spark channel. J. Exp. Theor. Phys., 34(7), 1068.
  • Dreizler, A., Lindenmaier, S., Maas, U., Hult, J., Aldén, M., and Kaminski, C.F. 2000. Characterisation of a spark ignition system by planar laser-induced fluorescence of OH at high repetition rates and comparison with chemical kinetic calculations. Appl. Phys. B, 70, 287. doi: 10.1007/s003400050047.
  • Essmann, S., Markus, D., and Maas, U. 2015. Investigation of the pressure wave and hot gas kernel induced by low energy electrical discharges. Proc. 25th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Leeds, UK, 2–7 August. 2015.
  • Essmann, S., Markus, D., and Maas, U. 2016. Investigation of the spark channel of electrical discharges near the minimum ignition energy. Plasma Phys. Technol., 3, 116.
  • Essmann, S., Markus, D., and Maas, U. 2017. Investigation of the flame kernel propagation after ignition by a low energy electrical discharge. Proc. 26th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Boston, 30 July–4 August, 2017.
  • Essmann, S., Spörhase, S., Grosshans, H., and Markus, D. 2018. Precise triggering of electrical discharges by ultraviolet laser radiation for the investigation of ignition processes. J. Electrostat., 91, 34. doi:10.1016/j.elstat.2017.12.003.
  • Gegechkori, N.М. 1951. Experimental studies of spark discharge channel. J. Exp. Theor. Phys., 4(21), 493.
  • Godunov, S.K., Zabrodin, A.V., Ivanov, M.I., Kraiko, A.N., and Prokopov, G.P. 1976. Numerical Solution of Multidimensional Problems of Gas Dynamics, Izdatelstvo Nauka, Moscow.
  • Gordon, S., and McBride, B.J. 1971. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations: Interim Revision March 1976 (NASA SP Vol−273), Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington for sale by the National Technical Information Service, Springfield, VA.])
  • Hattwig, M., and Steen, H. 2004. Handbook of Explosion Prevention and Protection. Wiley-VCH, Weinheim.
  • Kalantarov, P. 1986. Calculation of Inductances, Atom publisher, Leningrad.
  • Kogelschatz, U., and Schneider, W.R. 1972. Quantitative schlieren techniques applied to high current arc investigations. Appl. Opt., 11, 1822. doi: 10.1364/AO.11.001822.
  • Korytchenko, K.V. 2005. Gas-dynamic expansion of spark channel before shock wave formation. J. Kharkov National Univ., 657, 89.
  • Korytchenko, K.V. 2014. High-voltage electric discharge technique for the generation of shock waves and heating the reacting gas. Dr. Sc. Thesis, National Technical University Kharkov Polytechnic Institute.
  • Korytchenko, K.V., Poklonskii, E.V., and Krivosheev, P.N. 2014. Model of the spark discharge initiation of detonation in a mixture of hydrogen with oxygen. Russ. J. Phys. Chem. B, 8, 692. doi: 10.1134/S1990793114050169.
  • Lo, A., Cessou, A., Lacour, C., Lecordier, B., Boubert, P., Xu, D.A., Laux, C.O., and Vervisch, P. 2017. Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air. Plasma Sources Sci. Technol., 26, 045012. doi: 10.1088/1361-6595/aa5c78.
  • Maly, R.R. 1994. State of the art and future needs in. S.I. Engine Combustion. Proc. Combust. Inst., 25, 111. doi: 10.1016/S0082-0784(06)80635-1.
  • Ono, R., Nifuku, M., Fujiwara, S., Horiguchi, S., and Oda, T. 2005. Gas temperature of capacitance spark discharge in air. J. Appl. Phys., 97, 123307. doi: 10.1063/1.1938274.
  • Petersen, E.L., and Hanson, R.K. 1999. Reduced kinetics mechanisms for ram accelerator combustion. J. Propul. Power, 15, 591. doi: 10.2514/2.5468.
  • Popov, N.A. 2001. Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges. Plasma Phys. Rep., 27, 886. doi: 10.1134/1.1409722.
  • Popov, N.A. 2003. Formation and development of a leader channel in air. Plasma Phy. Rep., 29(8), 695. doi: 10.1134/1.1601648.
  • Quirk, J.J. 1994. A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids, 18, 555. doi: 10.1002/fld.1650180603.
  • Raizer, Y.P. 1997. Gas Discharge Physics, 2nd ed., Springer, Berlin, Barcelona.
  • Shcherba, A., and Dubovenko, K. 2008. High-Voltage Electric Discharge Compact Setups, Naukova Dumka, Kiev.
  • Thiele, M., Warnatz, J., and Maas, U. 2000. Geometrical study of spark ignition in two dimensions. Combust. Theor. Model., 4, 413. doi: 10.1088/1364-7830/4/4/303.
  • Tholin, F. 2012. Numerical simulation of nanosecond repetitively pulsed discharges in air at atmospheric pressure: application to plasma-assisted combustion. PhD Thesis, École Centrale.
  • Tholin, F., and Bourdon, A. 2013. Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure. J. Phys. D: Appl. Phys., 46, 365205. doi: 10.1088/0022-3727/46/36/365205.
  • Townsend, J.S. 1915. Electricity in Gases, Clarendon Press, Oxford.
  • Xu, D.A., Shneider, M.N., Lacoste, D.A., and Laux, C.O. 2014. Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air. J. Phys. D: Appl. Phys., 47, 235202. doi: 10.1088/0022-3727/47/23/235202.
  • Zeldovich, Y.B., Kogarko, S.M., and Simonov, N.N. 1956. Experimental investigation of spherical gas detonation. Russ. J. Tech. Phys., 26(8), 1744.
  • Zeldovich, Y.B., Raizer, Y.P., Hayes, W.D., and Probstein, R.F. 2002. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover Publications, Mineola, NY.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.