332
Views
14
CrossRef citations to date
0
Altmetric
Articles

The Role of Methyl Radical in Soot Formation

& ORCID Icon
Pages 2226-2242 | Received 04 Jul 2018, Accepted 20 Nov 2018, Published online: 20 Dec 2018

References

  • Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A. 2011. Shock tube and modeling study of soot formation during the pyrolysis and oxidation of a number of aliphatic and aromatic hydrocarbons. Proc. Combust. Inst., 33, 625. doi:10.1016/j.proci.2010.07.089
  • Appel, J., Bockhorn, H., and Frenklach, M. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust. Flame, 121, 122. doi:10.1016/S0010-2180(99)00135-2
  • Blahd, H., Johnsson, J., Olofsson, N.E., Bohlin, A., and Bengtsson, P.E. 2011. Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame. Proc. Combust. Inst., 33, 641. doi:10.1016/j.proci.2010.06.166
  • Blanquart, G., Pepiot-Desjardins, P., and Pitsch, H. 2009. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame, 156, 588. doi:10.1016/j.combustflame.2008.12.007
  • Bockhorn, H., Fetting, F., and Wenz, H.W. 1983. Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames. Ber. Bunsen-Ges. Phys. Chem., 87, 1067. doi:10.1002/bbpc.19830871121
  • Bone, A., and Coward, H.F. 1908. The thermal decomposition of hydrocarbons. Part I. [Methane, ethane, ethylene, and acetylene]. J. Chem. Soc., Trans., 93, 1197. doi:10.1039/CT9089301197
  • Burke, U., Somers, K.P., O’Toole, P., Zinner, C.M., Marquet, N., Bourque, G., Petersen, E.L., Metcalfe, W.K., Serinyel, Z., and Curran, H.J. 2015. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combust. Flame, 162, 315. doi:10.1016/j.combustflame.2014.08.014
  • Christensen, M., and Konnov, A.A. 2017. Laminar burning velocity of diacetyl \,+\, air flames. Further assessment of combustion chemistry of ketene. Combust. Flame, 178, 97. doi:10.1016/j.combustflame.2016.12.026
  • Cook, R.D., Davidson, D.F., and Hanson, R.K. 2009. High-temperature shock tube measurements of dimethyl ether decomposition and the reaction of dimethyl ether with OH. J. Phys. Chem. A, 113, 9974. doi:10.1021/jp809576k
  • Curran, H.J., Pitz, W.J., Westbrook, C.K., Dagaut, P., Boettner, J.-C., and Cathonnet, M. 1998. A wide range modeling study of dimethyl ether oxidation. Int. J. Chem. Kinet., 30, 229. doi:10.1002/(SICI)1097-4601(1998)30:3<229::AID-KIN9>3.0.CO;2-U
  • D’Anna, A., D’Alessio, A., and Kent, J. 2001. A computational study of hydrocarbon growth and the formation of aromatics in coflowing laminar diffusion flames of ethylene. Combust. Flame, 125, 1196. doi:10.1016/S0010-2180(01)00238-3
  • D’Anna, A., and Kent, J.H. 2003. Aromatic formation pathways in non-premixed methane flames. Combust. Flame, 132, 715. doi:10.1016/S0010-2180(02)00522-9
  • D’Anna, A., and Violi, A. 1998. A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Proc. Combust. Inst., 27, 425. doi:10.1016/S0082-0784(98)80431-1
  • Emelianov, A., Eremin, A., Makeich, A., and Jander, H. 2007. Heat release of carbon particle formation from hydrogen-free precursors behind shock waves. Proc. Combust. Inst., 30, 649. doi:10.1016/j.proci.2006.07.063
  • Eremin, A., Gurentsov, E., and Mikheyeva, E. 2012. Experimental study of molecular hydrogen influence on carbon particle growth in acetylene pyrolysis behind shock waves. Combust. Flame, 159, 3607. doi:10.1016/j.combustflame.2012.07.011
  • Eremin, A., Gurentsov, E., and Mikheyeva, E. 2015. Experimental study of temperature influence on carbon particle formation in shock wave pyrolysis of benzene and benzene-ethanol mixtures. Combust. Flame, 162, 207. doi:10.1016/j.combustflame.2014.09.015
  • Eremin, A., Mikheyeva, E., and Selyakov, I. 2018. Influence of methane addition on soot formation in pyrolysis of acetylene. Combust. Flame, 193, 83. doi:10.1016/j.combustflame.2018.03.007
  • Eremin, A.V. 2012. Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes. Prog. Energy Combust. Sci., 38, 1. doi:10.1016/j.pecs.2011.09.002
  • Eremin, A.V., Gurentsov, E.V., Popova, E., and Priemchenko, K. 2011. Size dependence of complex refractive index function of growing nanoparticles. Appl. Phys. B Laser Opt., 104, 285. doi:10.1007/s00340-011-4420-8
  • Fahr, A., and Stein, S.E. 1988. Reactions of vinyl and phenyl radicals with ethylene, ethane and benzene. Proc. Combust. Inst., 22, 1023. doi:10.1016/S0082-0784(89)80112-2
  • Frenklach, M. 2002. Reaction mechanism of soot formation in flames. PCCP, 4, 2028. doi:10.1039/b110045a
  • Goldaniga, A., Faravelli, T., Ranzi, E., Dagaut, P., and Cathonnet, M. 1998. Oxidation of oxygenated octane improvers: MTBE, ETBE, DIPE, and TAME. Proc. Combust. Inst., 27, 353. doi:10.1016/S0082-0784(98)80423-2
  • Haynes, B.S., Jander, H., Matzing, H., and Wagner, H.G. 1982. The influence of gaseous additives on the formation of soot in premixed flames. Proc. Combust. Inst., 19, 1379. doi:10.1016/S0082-0784(82)80314-7
  • Hwang, J.Y., and Chung, S.H. 2001. Growth of soot particles in counterflow diffusion flames of ethylene. Combust. Flame, 125, 752. doi:10.1016/S0010-2180(00)00234-0
  • Ishii, K., Ohashi, N., Teraji, A., and Kubo, M. 2009. Soot formation in hydrocarbon pyrolysis behind reflected shock waves. In Proceedings of 22nd ICDERS, Minsk, Belarus, July 27–31. Paper 184. http://www.icders.org/ICDERS2009/index.html
  • Krasnoukhov, V.S., Porfiriev, D.P., Zavershinskiy, I.P., Azyazov, V.N., and Mebel, A.M. 2017. Kinetics of the CH3 \,+\, C5H5 reaction: a theoretical study. J. Phys. Chem. A, 121, 9191. doi:10.1021/acs.jpca.7b09873
  • Liu, P., Lin, H., Yang, Y., Shao, C., Guan, B., and Huang, Z. 2015. Investigating the role of CH2 radicals in the HACA mechanism. J. Phys. Chem. A, 119, 3261. doi:10.1021/acs.jpca.5b06446
  • McEnally, C.S., Pfefferle, L.D., Atakan, B., and Kohse-Höinghaus, K. 2006. Studies of aromatic hydrocarbon formation mechanisms in flames: progress towards closing the fuel gap. Prog. Energy Combust. Sci., 32, 247. doi:10.1016/j.pecs.2005.11.003
  • Migliorini, F., Thomson, K.A., and Smallwood, G.J. 2011. Investigation of the optical properties of aging soot. Appl. Phys. B Laser Opt., 104, 273. doi:10.1007/s00340-011-4396-4
  • Miller, J.A., and Melius, C.F. 1992. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame, 91, 21. doi:10.1016/0010-2180(92)90124-8
  • Moskaleva, L.V., Mebel, A.M., and Lin, M.C. 1996. The CH3 \,+\, C5H5 reaction: a potential source of benzene at high temperatures. Proc. Combust. Inst., 26, 521. doi:10.1016/S0082-0784(96)80255-4
  • Pan, L., Kokjohn, S., and Huang, Z. 2015. Development and validation of a reduced chemical kinetic model for dimethyl ether combustion. Fuel, 160, 165. doi:10.1016/j.fuel.2015.07.066
  • Peukert, S.L., Labbe, N.J., Sivaramakrishnan, R., and Michael, J.V. 2013. Direct measurements of rate constants for CH3 radicals with C2H6, C2H4 and C2H2 at high temperatures. J. Phys. Chem. A, 117, 10228. doi:10.1021/jp311003d
  • Roesler, J.F., Martinot, S., McEnally, C.S., Pfefferle, L.D., Delfau, J.-L., and Vovelle, C. 2003. Investigating the role of methane on the growth of aromatic hydrocarbons and soot in fundamental combustion processes. Combust. Flame, 134, 249. doi:10.1016/S0010-2180(03)00093-2
  • Roesler, J.F., and Tessan, M.A. 2002. Aromatics and soot growth enhancement by methane addition to fuel-rich n-heptane combustion in a flow reactor. Combust. Sci. Technol., 161, 245. doi:10.1080/00102200008935819
  • Roesler, J.F., Tessan, M.A., and Montasne, X. 2001. Evidence for the contribution of methane in the formation of aromatics and soot in fuel-rich pre-mixed combustion. Chemosphere, 42, 823. doi:10.1016/S0045-6535(00)00256-3
  • Saggese, C., Ferrario, S., Camacho, J., Cuoci, A., Frassoldati, A., Ranzi, E., Wang, H., and Faravelli, T. 2015. Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame. Combust. Flame, 162, 3356. doi:10.1016/j.combustflame.2015.06.002
  • Saggese, C., Sanchez, N.E., Frassoldati, A., Cuoci, A., Faravelli, T., Alzueta, M.U., and Ranzi, E. 2014. Kinetic modeling study of polycyclic aromatic hydrocarbons and soot formation in acetylene pyrolysis. Energy Fuels, 28, 1489. doi:10.1021/ef402048q
  • Starke, R., Kock, B., Roth, P., Eremin, A., Gurentsov, E., Shumova, V., and Ziborov., V. 2003. Shock wave induced carbon particle formation from CCl4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII). Combust. Flame, 135, 77. doi:10.1016/S0010-2180(03)00148-2
  • Stein, J.A., Walker, J.A., Suryan, M.M., and Fahr, A. 1991. A new path to benzene in flames. Proc. Combust. Inst., 23, 85. doi:10.1016/S0082-0784(06)80245-6
  • Tranter, R.S., Lynch, P.T., and Yang, X. 2013. Dissociation of dimethyl ether at high temperatures. Proc. Combust. Inst., 34, 591. doi:10.1016/j.proci.2012.05.021
  • Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst., 33, 41. doi:10.1016/j.proci.2010.09.009
  • Yang, X., Jasper, A.W., Kiefer, J.H., and Tranter, R.S. 2009. The dissociation of diacetyl: a shock tube and theoretical study. J. Phys. Chem. A, 113, 8318. doi:10.1021/jp809576k

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.