464
Views
12
CrossRef citations to date
0
Altmetric
Articles

Experimental Study on the Combustion of Thermally Cracked Endothermic Hydrocarbon Fuel

&
Pages 213-228 | Received 09 Sep 2018, Accepted 13 Dec 2018, Published online: 26 Dec 2018

References

  • Battin-Leclerc, F. 2008. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog. Energy Combust. Sci., 34, 440–498. doi:10.1016/j.pecs.2007.10.002.
  • Castaldi, M., Leylegian, J., Chinitz, W., and Modroukas, D. 2006. Development of an effective endothermic fuel platform for regeneratively-cooled hypersonic vehicles. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA Paper 2006-4403. doi:10.2514/6.2006-4403.
  • Chakraborty, J.P., and Kunzru, D. 2009. High pressure pyrolysis of N-heptane. J. Anal. Appl. Pyrolysis, 86, 44–52. doi:10.1016/j.jaap.2009.04.001.
  • Colket, M.B., and Spadaccini, L.J. 2001. Scramjet fuels autoignition study. J. Propul. Power, 17, 315–323. doi:10.2514/2.5744.
  • Edwards*, T.I.M. 2006. Cracking and deposition behavior of supercritical hydrocarbon aviation fuels. Combust. Sci. Technol., 178, 307–334. doi:10.1080/00102200500294346.
  • Farrell, J.T., Johnston, R.J., and Androulakis, I.P. 2004. Molecular structure effects on laminar burning velocities at elevated temperature and pressure. 2004 Powertrain & Fluid Systems Conference & Exhibition. SAE Technical Paper 2004-01-2936. doi:10.4271/2004-01-2936.
  • Gascoin, N., Abraham, G., and Gillard, P. 2010. Synthetic and jet fuels pyrolysis for cooling and combustion applications. J. Anal. Appl. Pyrolysis, 89, 294–306. doi:10.1016/j.jaap.2010.09.008.
  • Herbinet, O., Marquaire, P.-M., Battin-Leclerc, F., and Fournet, R. 2007. Thermal decomposition of N-dodecane: experiments and kinetic modeling. J. Anal. Appl. Pyrolysis, 78, 419–429. doi:10.1016/j.jaap.2006.10.010.
  • Hillebrand, W., Hodek, W., and Kölling, G. 1984. Steam cracking of coal-derived oils and model compounds: 1. cracking of tetralin and T-decalin. Fuel, 63, 756–761. doi:10.1016/0016-2361(84)90063-2.
  • Jiang, P., Yan, J., Yan, S., Lu, Z., and Zhu, Y. 2018. Thermal cracking and heat transfer of hydrocarbon fuels at supercritical pressures in vertical tubes. Heat Transfer Eng., 1–13. doi:10.1080/01457632.2018.1432026.
  • Jiang, R., Liu, G., and Zhang, X. 2013. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels. Energy Fuels, 27, 2563–2577. doi:10.1021/ef400367n.
  • Jin, B., Jing, K., Liu, J., Zhang, X., and Liu, G. 2017. Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures. J. Anal. Appl. Pyrolysis, 125, 117–126. doi:10.1016/j.jaap.2017.04.010.
  • Kelley, A.P., and Law, C.K. 2009. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust. Flame, 156, 1844–1851. doi:10.1016/j.combustflame.2009.04.004.
  • Milton, B.E., and Keck, J.C. 1984. Laminar burning velocities in stoichiometric hydrogen and hydrogen/hydrocarbon gas mixtures. Combust. Flame, 58, 13–22. doi:10.1016/0010-2180(84)90074-9.
  • Pei, S., Wang, H., Zhang, X., Xu, S., and Liu, G. 2017. Experimental measurement of ignition delay times of thermally cracked n-decane in a shock tube. Energy Fuels, 31, 3262–3269. doi:10.1021/acs.energyfuels.6b03242.
  • Puri, P., Ma, F., Choi, J.-Y., and Yang, V. 2005. Ignition characteristics of cracked JP-7 fuel. Combust. Flame, 142, 454–457. doi:10.1016/j.combustflame.2005.06.001.
  • Sobel, D.R., and Spadaccini, L.J. 1997. Hydrocarbon fuel cooling technologies for advanced propulsion. J. Eng. Gas Turbines Power, 119, 344–351. doi:10.1115/1.2815581.
  • Wang, Z., Guo, Y., and Lin, R. 2009. Pyrolysis of hydrocarbon fuel ZH-100 under different pressures. J. Anal. Appl. Pyrolysis, 85, 534–538. doi:10.1016/j.jaap.2009.01.009.
  • Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., Zhang, F., and Qi, F. 2014. Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion.Combust. Flame, 161, 84–100. doi:10.1016/j.combustflame.2013.08.011.
  • Ward, T.A., Ervin, J.S., Zabarnick, S., and Shafer, L. 2005. Pressure effects on flowing mildly-cracked N-decane. J. Propul. Power, 21, 344–355. doi:10.2514/1.6863.
  • Xing, Y., Xie, W., Fang, W., Guo, Y., and Lin, R. 2009. Kinetics and product distributions for thermal cracking of a kerosene-based aviation fuel. Energy Fuels, 23, 4021–4024. doi:10.1021/ef9003297.
  • Yu, J., and Eser, S. 1997a. Kinetics of supercritical-phase thermal decomposition of C10− C14 normal alkanes and their mixtures. Ind. Eng. Chem. Res., 36, 585–591. doi:10.1021/ie9603934.
  • Yu, J., and Eser, S. 1997b. Thermal decomposition of C10− C14 normal alkanes in near-critical and supercritical regions: product distributions and reaction mechanisms. Ind. Eng. Chem. Res., 36, 574–584. doi:10.1021/ie960392b.
  • Yu, J., and Eser, S. 1998a. Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 1. N-butylbenzene and N-butylcyclohexane. Ind. Eng. Chem. Res., 37, 4591–4600. doi:10.1021/ie980303q.
  • Yu, J., and Eser, S. 1998b. Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 2. decalin and tetralin. Ind. Eng. Chem. Res., 37, 4601–4608. doi:10.1021/ie980302y.
  • Zeng, M., Yuan, W., Wang, Y., Zhou, W., Zhang, L., Qi, F., and Li, Y. 2014. Experimental and kinetic modeling study of pyrolysis and oxidation of N-decane. Combust. Flame, 161, 1701–1715. doi:10.1016/j.combustflame.2014.01.002.
  • Zheng, D., Zhong, B.-J., and Xiong, P.-F. 2018. Experimental study on laminar flame speeds and chemical kinetic model of 2,4,4-trimethyl-1-pentene. Fuel, 229, 95–104. doi:10.1016/j.fuel.2018.05.011.
  • Zheng, D., Zhong, B.-J., and Yao, T. 2017. Methodology for formulating aviation kerosene surrogate fuels and the surrogate fuel model for HEF kerosene. Acta Phys. Chim. Sin., 33, 2438–2445. doi:10.3866/PKU.WHXB201706121.
  • Zhong, B.-J., and Peng, H.-S. 2017. Measurement of laminar flame speed and chemical kinetic model of 1-Pentene/air mixtures. Combust. Sci. Technol., 189, 1698–1712. doi:10.1080/00102202.2017.1320551.
  • Zhong, B.-J., and Peng, H.-S. 2018. Experimental and kinetic investigations of the effect of H2/CH4/C2H4 addition on the burning properties of practical jet fuel. Proc. Combust. Inst., 37, In Press. doi:10.1016/j.proci.2018.05.033.
  • Zhong, B.-J., Peng, H.-S., and Zheng, D. 2018. The effect of different class of hydrocarbons on laminar flame speeds of three C7 fuels. Fuel, 225, 225–229. doi:10.1016/j.fuel.2018.03.126.
  • Zhu, Y., Liu, B., and Jiang, P. 2013. Experimental and numerical investigations on N-decane thermal cracking at supercritical pressures in a vertical tube. Energy Fuels, 28, 466–474. doi:10.1021/ef401924s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.