177
Views
15
CrossRef citations to date
0
Altmetric
Articles

Characteristics and Kinetics of Huadian Oil Shale Pyrolysis via Non-isothermal Thermogravimetric and Gray Relational Analysis

, , , &
Pages 471-485 | Received 09 Oct 2018, Accepted 28 Jan 2019, Published online: 22 Feb 2019

References

  • Akahira, T., and Sunose, T. 1971. Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.), 16, 22–31.
  • Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., and Barranco, R. 2011. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 92(9), 1805–1811. doi:10.1016/j.fuproc.2011.04.037
  • Bai, F.T., Guo, W., Lü, X.S., Liu, Y.M., Guo, M.Y., Li, Q., and Sun, Y.H. 2015a. Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data. Fuel, 146, 111–118. doi:10.1016/j.fuel.2014.12.073
  • Bai, F.T., Sun, Y.H., and Liu, Y.M. 2016. Thermogravimetric analysis of Huadian oil shale combustion at different oxygen concentrations. Energy Fuel, 30(6), 4450–4456. doi:10.1021/acs.energyfuels.5b02888
  • Bai, F.T., Sun, Y.H., Liu, Y.M., Li, Q., and Guo, M.Y. 2015b. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energy Convers. Manage., 97, 374–381. doi:10.1016/j.enconman.2015.03.007
  • Bai, J., Chen, X., Shao, J., Jia, C., and Wang, Q. 2018. Study of breakage of main covalent bonds during co-pyrolysis of oil shale and alkaline lignin by TG-FTIR integrated analysis. J. Energy Inst., doi:10.1016/j.joei.2018.04.007
  • Coats, A.W., and Redfern, J.P. 1964. Kinetic parameters from thermogravimetric data. Nature, 201, 68–69. doi:10.1038/201068a0
  • Cui, Z.G., Jiang, X.M., Han, X.X., and Ma, S.X. 2017. Intrinsic conversion mechanism on nitrous oxide and nitrogen oxide during circulating fluidized bed combustion of oil shale. Combust. Sci. Technol., 189(7), 1162–1185. doi:10.1080/00102202.2016.1264940
  • Deng, J. 1989. The Course on Grey System Theory.
  • Foltin, J.P., Lisboa, A.C.L., and de Klerk, A. 2017. Oil shale pyrolysis: conversion dependence of kinetic parameters. Energy Fuel, 31(7), 6766–6776. doi:10.1021/acs.energyfuels.7b00578
  • Friedman, H.L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci., Part C Polym. Symp., 6, 183–195. doi:10.1002/polc.5070060121
  • Han, X.X., Jiang, X.M., Liu, J., and Wang, H. 2006. Grey relational analysis of N2O emission from oil shale-fired circulating fluidized bed. Oil Shale, 23(2), 99–109.
  • Huang, Y., Fan, C., Han, X., and Jiang, X. 2016. A TGA-MS investigation of the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale. Oil Shale, 33(2), 125–141. doi:10.3176/oil.2016.2.03
  • Janković, B. 2013. The kinetic modeling of the non-isothermal pyrolysis of Brazilian oil shale: application of the Weibull probability mixture model. J. Petrol. Sci. Eng., 111, 25–36. doi:10.1016/j.petrol.2013.10.001
  • Jiang, X.M., Han, X.X., and Cui, Z.G. 2006. Mechanism and mathematical model of Huadian oil shale pyrolysis. J. Therm. Anal. Calorim., 86(2), 457–462. doi:10.1007/s10973-005-7065-1
  • Kök, M.V., and Senguler, I. 2014. Geological and thermal characterization of Eskişehir region oil shales. J. Therm. Anal. Calorim., 116(1), 367–372. doi:10.1007/s10973-013-3537-x
  • Liu, Q.Q., Han, X.X., Li, Q.Y., Huang, Y.R., and Jiang, X.M. 2014. TG-DSC analysis of pyrolysis process of two Chinese oil shales. J. Therm. Anal. Calorim., 116(1), 511–517. doi:10.1007/s10973-013-3524-2
  • Málek, J. 1992. The kinetic analysis of non-isothermal data. Thermochim. Acta, 200, 257–269. doi:10.1016/0040-6031(92)85118-F
  • Moine, E.C., Bouamoud, R., El Hamidi, A., Khachani, M., Halim, M., and Arsalane, S. 2018. Mineralogical characterization and non-isothermal pyrolysis kinetics of Moroccan Rif oil shale. J. Therm. Anal. Calorim., 131(2), 993–1004. doi:10.1007/s10973-017-6632-6
  • Qin, H., Yue, Y., Zhang, L., Liu, Y., Chi, M., Liu, H., Wang, Q., and Liu, B. 2016. Study on co-combustion kinetics of oil shale sludge and semicoke. Energy Fuel, 30(3), 2373–2384. doi:10.1021/acs.energyfuels.5b02024
  • Tang, Y. 2016. A laboratorial study of spontaneous combustion characteristics of the oil shale in Fushun, China. Combust. Sci. Technol., 188(6), 997–1010. doi:10.1080/00102202.2015.1136301
  • Tiwari, P., and Deo, M. 2012. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 94, 333–341. doi:10.1016/j.fuel.2011.09.018
  • Torrente, M.C., and Galan, M.A. 2001. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel, 80(3), 327–334. doi:10.1016/S0016-2361(00)00101-0
  • Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 520(1), 1–19. doi:10.1016/j.tca.2011.03.034
  • Wang, Q., Cui, D., Pan, S., Wang, Z., Liu, Q., and Liu, B. 2018a. Compositional characterization of neutral fractions in <300℃ distillates of six shale oils using extrography followed by GC-TOF/MS analysis. Fuel, 224, 610–618.doi:10.1016/j.fuel.2018.03.124
  • Wang, Q., Cui, D., Wang, P., Bai, J., Wang, Z., and Liu, B. 2018b. A comparison of the structures of >300℃ fractions in six Chinese shale oils obtained from different locations using 1 H NMR, 13 C NMR and FT-IR analyses. Fuel, 211, 341–352. doi:10.1016/j.fuel.2017.09.071
  • Wang, S., Jiang, X.M., Wang, Q., Han, X.X., and Ji, H.S. 2013. Experiment and grey relational analysis of seaweed particle combustion in a fluidized bed. Energy Convers. Manage., 66, 115–120. doi:10.1016/j.enconman.2012.10.006
  • Wang, W., Li, S., Yue, C., and Ma, Y. 2015. Multistep pyrolysis kinetics of North Korean oil shale. J. Therm. Anal. Calorim., 119(1), 643–649. doi:10.1007/s10973-014-4191-7
  • Williams, P.T., and Ahmad, N. 2000. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl. Energy, 66(2), 113–133. doi:10.1016/S0306-2619(99)00038-0
  • Xu, J.G., and Wei, Z.L. 1999. The study of pyrolysis property of pulverized coal by thermogravimetry. J. Combust. Sci. Technol., 5(2), 175–179.
  • Yu, H.L., and Jiang, X.M. 2001. Study of pyrolysis property of Huadian oil shale. J. Fuel Chem. Technol., 29(5), 450–453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.