232
Views
15
CrossRef citations to date
0
Altmetric
Articles

Valorization of Orange Peel Residues via Fluidized Bed Torrefaction: Comparison between Different Bed Materials

ORCID Icon, , , &
Pages 1585-1599 | Received 11 Sep 2018, Accepted 10 Feb 2019, Published online: 04 Mar 2019

References

  • Atienza-Martìnez, M., Fonts, I., Abrego, J., Ceamanos, J., and Gea, G. 2013. Sewage sludge torrefaction in a fluidized bed reactor. Chem. Eng. J., 222, 534–545. doi:10.1016/j.cej.2013.02.075
  • Bates, R., and Ghoniem, A. 2012. Biomass torrefaction: modeling of volatile and solid product evolution kinetics. Bioresour. Technol., 124, 460–469. doi:10.1016/j.biortech.2012.07.018
  • Bergman, P.C.A., and Kiel, J.H.A. 2005. Torrefaction for biomass upgrading. ECN Report No.: ECN-RX-05-180 Energy Research Centre of The Netherlands. Available online at: https://www.ecn.nl/docs/library/report/2005/rx05180.pdf.
  • Brachi, P., Chirone, R., Miccio, F., Miccio, M., and Ruoppolo, G. 2016. Mass and energy balances for a stand-alone tomato peels torrefaction plant, Proc. XXXIX Meeting of the Italian Section of the Combustion Institute, 4–16 June, Napoli, Italy.
  • Brachi, P., Chirone, R., Miccio, F., Miccio, M., and Ruoppolo, G. 2017. Segregation and fluidization behavior of poly-disperse mixtures of biomass and inert particles. Chem. Eng. Trans., 57, 811–816.
  • Brachi, P., Chirone, R., Miccio, F., Miccio, M., and Ruoppolo, G. 2018. Entrained-flow gasification of torrefied tomato peels: combining torrefaction experiments with chemical equilibrium modeling for gasification. Fuel, 220, 744–753. doi:10.1016/j.fuel.2018.02.027
  • Brachi, P., Chirone, R., Michele, M., and Ruoppolo, G. 2018a. Fluidized bed torrefaction of commercial wood pellets: process performance and solid product quality. Energy Fuels, 32, 9459–9469. doi:10.1021/acs.energyfuels.8b01519
  • Brachi, P., Miccio, F., Miccio, M., and Ruoppolo, G. 2016a. Torrefaction of tomato peel residues in a fluidized bed of inert particles and a fixed-bed reactor. Energ. Fuel, 30, 4858–4868. doi:10.1021/acs.energyfuels.6b00328
  • Brachi, P., Miccio, F., Miccio, M., and Ruoppolo, G. 2016b. Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating. Fuel Process. Technol., 130, 147–154. doi:10.1016/j.fuproc.2014.09.043
  • Brachi, P., Riianova, E., Miccio, M., Miccio, F., Ruoppolo, G., and Chirone, R. 2017a. Valorization of sugar beet pulp via torrefaction with a focus on the effect of the preliminary extraction of pectins. Energ. Fuel., 31, 9595−9604. doi:10.1021/acs.energyfuels.7b01766
  • Brito, P., Rodrigues, F., Calado, L., and Oliveira, A. 2012. Thermal gasification of agro-industrial residues. WIT transactions on ecology and the environment. Waste Manage. Environ., (VI), 163, 95–102.
  • Cavagnol, S., Roesler, J.F., Sanz, E., Nastoll, W., Lu, P., and Perré, P. 2015. Exothermicity in wood torrefaction and its impact on product mass yields: from micro to pilot scale. Can. J. Chem. Eng., 93, 331–339. doi:10.1002/cjce.22128
  • Chen, W.H., Peng, J., and Bi, X.T. 2015. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sust. Energ. Rev., 44, 847–866. doi:10.1016/j.rser.2014.12.039
  • Cui, H., and Grace, J.R. 2007. Fluidization of biomass particles: a review of experimental multiphase flow aspects. Chem. Eng. Sci., 62, 45–55. doi:10.1016/j.ces.2006.08.006
  • Dhungana, A., Dutta, A., and Basu, P. 2012. Torrefaction of non-lignocellulose biomass waste. Can. J. Chem. Eng., 90, 186–195. doi:10.1002/cjce.20527
  • Di Blasi, C., Branca, C., Sarnataro, F.E., and Gallo, A. 2014. Thermal runaway in the pyrolysis of some lignocellulosic biomasses. Energ. Fuel., 28, 2684−2696. doi:10.1021/ef500296g
  • Erdogan, E., Atila, B., Mumme, J., Reza, M.T., Toptas, A., and Elibo, Y.J. 2015. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol., 196, 35–42. doi:10.1016/j.biortech.2015.06.115
  • Felfli, F., Luengo, C.A., Suarez, J.A., and Beaton, P.A. 2005. Wood briquette torrefaction. Energy Sustain. Develop., 9, 19–22. doi:10.1016/S0973-0826(08)60519-0
  • Gogoi, D., Bordoloi, N., Goswami, R., Narzari, R., Saikia, R., Sut, D., Gogoi, L., and Kataki, R. 2017. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: an agro-processing wastes. Bioresour Technol., 242, 36–44. doi:10.1016/j.biortech.2017.03.169
  • Grigiante, M., and Antolini, D. 2015. Mass yield as guide parameter of the torrefaction process. An experimental study of the solid fuel properties referred to two types of biomass. Fuel, 153, 499–509. doi:10.1016/j.fuel.2015.03.025
  • Karki, S., Poudel, J., and Oh, S.C. 2018. Thermal pre-treatment of sewage sludge in a lab-scale fluidized bed for enhancing its solid fuel properties. Appl. Sci., 8, 1–15. doi:10.3390/app8020183
  • Koppejan, J., Sokhansanj, S., Melin, S., and Madrali, S. 2012. Status overview of torrefaction technologies. IEA Bioenergy Task 32 Final Report. Available online at: http://www.ieabcc.nl/publications/IEA_Bioenergy_T32_Torrefaction_rev iew.pdf.
  • Kumar, A., Jones, D.D., and Hanna, M.A. 2009. Thermochemical biomass gasification: A review of the current status of the technology. Energies, 2, 556–581. doi:10.3390/en20300556
  • Li, H., Legros, R., Bi, X.T., Lim, C.J., and Sokhansanj, S. 2012. Torrefaction of sawdust in a fluidized bed reactor. Bioresour. Technol., 103, 453–458. doi:10.1016/j.biortech.2011.10.009
  • Mafu, L.D., Neomagus, H.W.J.P., Everson, R.C., Carrier, M., Strydom, C.A., and Bunt, J.R. 2016. Structural and chemical modifications of typical South African biomasses during torrefaction. Biores. Technol., 202, 192–197. doi:10.1016/j.biortech.2015.12.007
  • Medic, D., Darr, M., Shah, A., Potter, B., and Zimmerman, J. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel, 91, 147–154. doi:10.1016/j.fuel.2011.07.019
  • Miranda, R., Bustos-Martinez, D., Sosa Blanco, C., Gutierrez Villarreal, M.H., and Rodriguez Cantu, M.E. 2009. Pyrolysis of sweet orange (Citrus sinensis) dry peel. J. Anal. Appl. Pyrolysis, 86, 245–325. doi:10.1016/j.jaap.2009.06.001
  • Park, J., Meng, J., Lim, K.H., Rojas, O.J., and Park, S. 2013. Transformation of lignocellulosic biomass during torrefaction. J. Anal. Appl. Pyrol., 100, 199–206. doi:10.1016/j.jaap.2012.12.024
  • Peng, J.H., Bi, X.T., Sokhansanj, S., and Lim, C.J. 2013. Torrefaction and densification of different species of softwood residues. Fuel, 111, 411–421. doi:10.1016/j.fuel.2013.04.048
  • Pimchuai, A., Dutta, A., and Basu, P. 2010. Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels, 24, 4638–4645. doi:10.1021/ef901168f
  • Repellin, V., Govin, A., Rolland, M., and Guyonnet, R. 2010. Energy requirement for fine grinding of torrefied wood. Biomass. Bioenergy, 34, 923–930. doi:10.1016/j.biombioe.2010.01.039
  • Ribeiro, J.M.C., Godina, R., de Oliveira Matias, J.C., and Nunes, L.J.R. 2018. Future perspectives of biomass torrefaction: review of the current state-of-the-art and research development. Sustainability, 10, 1–17. doi:10.3390/su10103546
  • Stelte, W. 2012. Torrefaction of unutilized biomass resources and characterization of torrefaction gasses, Resultat Kontrakt (RK) Report Danish Technological Institute.
  • Tumuluru, J.S., Sokhansanj, S., Hess, J.R., Wright, C.T., and Boardman, R.D. 2011. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol., 7, 384–401. doi:10.1089/ind.2011.7.384
  • Volpe, M., Panno, D., Volpe, R., and Messineo, A. 2015. Upgrade of citrus waste as a biofuel via slow pyrolysis. J. Anal. Appl. Pyrolysis, 115, 66–76. doi:10.1016/j.jaap.2015.06.015
  • Werther, J., Saenger, M., Hartge, E.U., Ogada, T., and Siagi, Z. 2000. Combustion of agricultural residues. Prog. Energy Combust. Sci., 26, 1–27. doi:10.1016/S0360-1285(99)00005-2
  • Wu, K.T., Tsai, C.J., Chen, C.S., and Chen, H.W. 2012. The characteristics of torrefied microalgae. Appl. Energy, 100, 52–57. doi:10.1016/j.apenergy.2012.03.002
  • Yoo, H.S., and Choi, H.S. 2016. A study on torrefaction characteristics of waste sawdust in an auger type pyrolyzer. J. Mater. Cycles Waste Manag., 18, 460–468. doi:10.1007/s10163-016-0482-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.