784
Views
25
CrossRef citations to date
0
Altmetric
Articles

Numerical prediction of the Flame Describing Function and thermoacoustic limit cycle for a pressurised gas turbine combustor

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 979-1002 | Received 20 Sep 2018, Accepted 15 Jan 2019, Published online: 08 Mar 2019

References

  • Abou-Taouk, A., Farcy, B., Domingo, P., Vervisch, L., Sadasivuni, S., and Eriksson, L.E. 2016. Optimized reduced chemistry and molecular transport for large eddy simulation of partially premixed combustion in a gas turbine. Combust. Sci. Technol., 188, 21–39. doi:10.1080/00102202.2015.1074574
  • Bauerheim, M., Staffelbach, G., Worth, N.A., Dawson, J., Gicquel, L.Y., and Poinsot, T. 2015. Sensitivity of LES-based harmonic flame response model for turbulent swirled flames and impact on the stability of azimuthal modes. Proc. Combust. Instit., 35(3), 3355–3363. doi:10.1016/j.proci.2014.07.021
  • Boströmm, E. 2015. Investigation of outflow boundary conditions for convection-dominated incompressible fluid flows in a spectral element framework. Master’s thesis. SCI School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden. https://www.diva-portal.org/smash/get/diva2:804993/FULLTEXT01.pdf
  • Bulat, G. 2012. Large eddy simulations of reacting swirling flows in an industrial burner. Doctoral dissertation. Imperial College London, London. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.739539.
  • Bulat, G., Jones, W.P., and Marquis, A.J. 2014. NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method. Combust. Flame, 161(7), 1804–1825. doi:10.1016/j.combustflame.2013.12.028
  • Bulat, G., Jones, W.P., and Navarro-Martinez, S. 2015. Large eddy simulations of isothermal confined swirling flow in an industrial gas-turbine. Int. J. Heat Fluid Fl., 51, 50–64. doi:10.1016/j.ijheatfluidflow.2014.10.028
  • Chomiak, J., and Karlsson, A. 1996. Flame liftoff in diesel sprays. Symp. (Int.) Combust., 26(2), 2557–2564. doi:10.1016/S0082-0784(96)80088-9
  • Dowling, A.P. 1997. Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech., 346, 271–290. doi:10.1017/S0022112097006484
  • Febrer, G., Yang, Z., and McGuirk, J. 2011. A hybrid approach for coupling of acoustic wave effects and incompressible LES of reacting flows. The 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California, U.S.A. Paper No. AIAA 2011-6127.
  • Fedina, E., Fureby, C., Bulat, G., and Meier, W. 2017. Assessment of finite rate chemistry large eddy simulation combustion models. Flow, Turb. Combust., 99(2), 385–409. doi:10.1007/s10494-017-9823-0
  • Fedina, E., Fureby, C., Bulat, G., and Meier, W. 2017. Assessment of finite rate chemistry large eddy simulation combustion models. flow, turb. Combust., 99(2),385–409. doi: 10.1007/s10494-017-9823-0
  • Fureby, C., Nordin-Bates, K., Petterson, K., Bresson, A., and Sabelnikov, V. 2015. A computational study of supersonic combustion in strut injector and hypermixer flow fields. Proc. Combust. Instit., 35(2), 2127–2135. doi:10.1016/j.proci.2014.06.113
  • Goodwin, D.G., Moffat, H.K., and Speth, R.L. 2014. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org. (Version 2.1.2)
  • Gregory, P.S., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., … Qin, Z. 2018. GRI-Mech 3.0 (Tech. Rep.). UC Berkeley. http://combustion.berkeley.edu/gri-mech/
  • Han, X., Laera, D., Morgans, A.S., Sung, C.J., Hui, X., and Lin, Y.Z. 2018. Flame macrostructures and thermoacoustic instabilities in stratified swirling flames. Proc. Comb. Inst., In Press. doi:10.1016/j.proci.2018.06.147
  • Han, X., Li, J., and Morgans, A.S. 2015. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model. Combust. Flame, 162(10), 3632–3647. doi:10.1016/j.combustflame.2015.06.020
  • Han, X., and Morgans, A.S. 2015. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver. Combust. Flame, 162(5), 1778–1792. doi:10.1016/j.combustflame.2014.11.039
  • Hermeth, S., Staffelbach, G., Gicquel, L.Y., Anisimov, V., Cirigliano, C., and Poinsot, T. 2014. Bistable swirled flames and influence on flame transfer functions. Combust. Flame, 161(1), 184–196. doi:10.1016/j.combustflame.2013.07.022
  • Jones, W.P., Marquis, A.J., and Prasad, V.N. 2012. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust. Flame, 159(10), 3079–3095. doi:10.1016/j.combustflame.2012.04.008
  • Jones, W.P., and Navarro-Martinez, S. 2007 August. Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame, 150(3), 170–187. doi:10.1016/j.combustflame.2007.04.003
  • Jones, W.P., and Prasad, V.N. 2010. Large eddy simulation of the Sandia flame series (D, E and F) using the Eulerian stochastic field method. Combust. Flame, 157, 1621–1636. doi:10.1016/j.combustflame.2010.05.010
  • Krediet, H., Beck, C., Krebs, W., and Kok, J. 2013. Saturation mechanism of the heat release response of a premixed swirl flame using LES. Proc. Combust. Instit., 34(1), 1223–1230. doi:10.1016/j.proci.2012.06.140
  • Laera, D., Campa, G., and Camporeale, S.M. 2017. A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors. Appl. Energy, 187, 216–227. doi:10.1016/j.apenergy.2016.10.124
  • Laera, D., and Camporeale, S.M. 2017. A weakly nonlinear approach based on a distributed flame describing function to study the combustion dynamics of a full-scale lean-premixed swirled burner. J. Eng. Gas Turb. Power, 139(9), 091501. doi:10.1115/1.4036010
  • Lee, C.Y., and Cant, S. 2017. LES of nonlinear saturation in forced turbulent premixed flames. Flow Turb. Combust., 99(2), 461–486. doi:10.1007/s10494-017-9811-4
  • Li, J., and Morgans, A.S. 2015. Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach. J. Sound Vib., 346, 345–360. doi:10.1016/j.jsv.2015.01.032
  • Li, J., Xia, Y., Morgans, A.S., and Han, X. 2017. Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame. Combust. Flame, 185, 28–43. doi:10.1016/j.combustflame.2017.06.018
  • National Institute of Standards and Technology (NIST). 1998. NIST-JANAF Thermochemical Tables, 4th ed., NIST Standard Reference Database 13, NIST, U. S. Department of Commerce. Gaithersburg, Maryland, U.S.A. doi:10.18434/T42S31
  • Noiray, N., Durox, D., Schuller, T., and Candel, S. 2008. A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech., 615, 139–167. doi:10.1017/S0022112008003613
  • Palies, P., Durox, D., Schuller, T., and Candel, S. 2010. The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame, 157(9), 1698–1717. doi:10.1016/j.combustflame.2010.02.011
  • Piomelli, U., and Liu, J. 1995. Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids, 7(4), 839–848. doi:10.1063/1.868607
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, 2nd ed. RT Edwards, Inc., Philadelphia, PA. p. 34.
  • Sabatino, F.D., Guiberti, T.F., Boyette, W.R., Roberts, W.L., Moeck, J.P., and Lacoste, D.A. 2018. Effect of pressure on the transfer functions of premixed methane and propane swirl flames. Combust. Flame, 193, 272–282. doi:10.1016/j.combustflame.2018.03.011
  • Sabelnikov, V., and Fureby, C. 2013. LES combustion modeling for high Re flames using a multi-phase analogy. Combust. Flame, 160(1), 83–96. doi:10.1016/j.combustflame.2012.09.008
  • Stopper, U., Aigner, M., Ax, H., Meier, W., Sadanandan, R., StöHr, M., and Bonaldo, A. 2010. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames. Exp. Therm Fluid Sci., 34(3), 396–403. doi:10.1016/j.expthermflusci.2009.10.012
  • Stopper, U., Meier, W., Sadanandan, R., StöHr, M., Aigner, M., and Bulat, G. 2013. Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape. Combust. Flame, 160(10), 2103–2118. doi:10.1016/j.combustflame.2013.04.005
  • Sung, C.J., Law, C.K., and Chen, J.-Y. 2001. Augmented reduced mechanisms for NO emission in methane oxidation. Combust. Flame, 125(1), 906–919. doi:10.1016/S0010-2180(00)00248-0
  • Sweby, P.K. 1984. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 21(5), 995–1011. doi:10.1137/0721062
  • Weller, H.G., Tabor, G., Jasak, H., and Fureby, C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys., 12(6), 620–631. doi:10.1063/1.168744
  • Xia, Y., Duran, I., Morgans, A.S., and Han, X. 2016. Dispersion of entropy waves advecting through combustor chambers. Proceedings of the 23rd International Congress on Sound & Vibration (ICSV23), Athens, Greece.
  • Xia, Y., Duran, I., Morgans, A.S., and Han, X. 2018a. Dispersion of entropy perturbations transporting through an industrial gas turbine combustor. Flow, Turb. Combust., 100(2), 481–502. doi:10.1007/s10494-017-9854-6
  • Xia, Y., Laera, D., Morgans, A.S., Jones, W.P., and Rogerson, J.W. 2018b. Thermoacoustic limit cycle predictions of a pressurised longitudinal industrial gas turbine combustor. ASME Turbo Expo. Paper No. GT2018-75146.
  • Xia, Y., Li, J., Morgans, A.S., and Han, X. 2017a. Computation of local flame describing functions for thermoacoustic oscillations in a combustor with a long flame. Proceedings of the 8th European Combustion Meeting (ECM8), Dubrovnik, Croatia.
  • Xia, Y., Morgans, A.S., Jones, W.P., and Han, X. 2017b. Simulating flame response to acoustic excitation for an industrial gas turbine combustor. Proceedings of the 24th International Congress on Sound & Vibration (ICSV24), London, UK.
  • Xia, Y., Morgans, A.S., Jones, W.P., Rogerson, J.W., Bulat, G., and Han, X. 2017c. Predicting thermoacoustic instability in an industrial gas turbine combustor: combining a low order network model with flame LES. ASME Turbo Expo. Paper No. GT2017-63247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.