216
Views
0
CrossRef citations to date
0
Altmetric
Articles

Stochastic Numerical Simulation of a Turbulent Inverse Diffusion Flame Generated by a CAP-type Burner

, ORCID Icon, , &
Pages 657-679 | Received 29 Nov 2018, Accepted 03 Mar 2019, Published online: 25 Mar 2019

References

  • Afarin, Y., and Tabejamaat, S. 2013. The effect of fuel inlet turbulence intensity on H2/CH4 flame structure of MILD combustion using the LES method. Combust Theor Model, 17, 383–410. doi:10.1080/13647830.2012.742570.
  • Amin, S., Emara, A., Hussien, A., and Shabaka, I. 2014.Modeling of the thermal characteristics of an eccentric multi-stage inverse jet diffusion flame burner. Proc. ASME Heat Transfer and Thermal Engineering, ASME International Mechanical Engineering Congress and Exposition.Montreal Quebec, Canada, November 14-202014.
  • Barakat, H.Z., Salem, M.R., Morgan, A., and Saad, H.E. 2013. Study of effects of burner configuration and jet dynamics on characteristics of inverse diffusion flames. J Mech Eng Res, 5, 128–144. doi:10.5897/JMER2013.0262.
  • Choy, Y.S., Zhen, H.S., Leung, C.W., Cheung, C.S., and Leung, C.K. 2013. Noise generation by open inverse diffusion flames. J Vib Control, 20, 1671–1681. doi:10.1177/1077546312473317.
  • De la Cruz, M., Martínez, E., Polupan, G., and Vicente, W. 2017. Numerical study of the effect of jet velocity on methane-oxygen confined inverse diffusion flame in a 4 Lug-Bolt array. Energy, 141, 1629–1649. doi:10.1016/j.energy.2017.11.094.
  • Dong, L.L., Cheung, C.S., and Leung, C.W. 2007. Heat transfer characteristics of an impinging inverse diffusion flame jet - Part I: free flame structure. Int J Heat Mass Transf, 50, 5108–5123. doi:10.1016/j.ijheatmasstransfer.2007.07.018.
  • Dong, L.L., Cheung, C.S., and Leung, C.W. 2007b. Heat transfer characteristics of an impinging inverse diffusion flame jet - Part II: impinging flame structure and impingement heat transfer. Int J Heat Mass Transf, 50, 5124–5138. doi:10.1016/j.ijheatmasstransfer.2007.07.017.
  • Dong, L.L., Cheung, C.S., and Leung, C.W. 2011. Combustion optimization of a port-array inverse diffusion flame jet. Energy, 36, 2834–2846. doi:10.1016/j.energy.2011.02.025
  • Dopazo, C. 1975. Probability density function approach for an axisymmetric heated jet: centerline evolution. Phys Fluids, 18, 397–404. doi:10.1063/1.861163.
  • Dopazo, C. 1994. Recent developments in pdf methods.  In Turbulent Reacting Flows, ed. P.A. Libby  and F.A. Williams, 375–474. Academic.London
  • Fueyo, N., Vicente, W., Blasco, J., and Dopazo, C. 2000. Stochastic simulation of NO formation in lean premixed methane flames. Combust Sci Technol, 153, 295–311. doi:10.1080/00102200008947266.
  • Gauntner, J.W., Livingood, J.N.B., and Hrycak, P. 1970. Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate, National Aeronautics and Space Administration, Washington, D.C.
  • Kaplan, C.R., and Kailasanath, K. 2001. Flow-field effects on soot formation in normal and inverse methane-air diffusion flames. Combustion and Flame, 124, 275–294. doi:10.1016/S0010-2180(00)00196-6.
  • Katta, R.V., Blevins, G.L., and Roquemore, M.W. 2005. Dynamics of an inverse diffusion flame and its role in polycyclic-aromatic-hydrocarbon and soot formation. Combustion and Flame, 142, 33–51. doi:10.1016/j.combustflame.2005.02.006.
  • Li, X., et al. 2015. Inverse diffusion flame of CH4-O2 in hot syngas coflow. Int J Hydrogen Energy, 40, 16104–16114. doi:10.1016/j.ijhydene.2015.09.073.
  • Lindstedt, R.P., Louloudi, S.A., and Váos, E.M. 2000. Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. University of Edinburgh, Edinburgh, Scotland from July 30 to August 4. Proceedings of the Combustion Institute, The Twenty-Eighth International Symposium on Combustion was held on the campus of the University of Edinburgh, Edinburgh, Scotland, 28: 149–156.
  • Liu, F., and Smallwood, G.J. 2011. Control of the structure and sooting characteristics of a coflow laminar methane/air diffusion flame using a central air jet: an experimental and numerical study. Proc Combust Inst, 33, 1063–1070. doi:10.1016/j.proci.2010.06.097.
  • Miao, J., Leung, C.W., Cheung, C.S., Huang, Z., and Jin, W. 2016. Effect of H2 addition on OH distribution of LPG/Air circumferential inverse diffusion flame. Int J Hydrogen Energy, 41, 9653–9663. doi:10.1016/j.ijhydene.2016.02.105.
  • Patankar, S., and Spalding, D. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf, 15, 1787,1806.
  • Pope, S.B. 1981. A Monte Carlo method for the pdf equation of turbulent reactive flow. Combust Sci Technol, 25, 159–174. doi:10.1080/00102208108547500.
  • Pope, S.B. 1985. PDF methods for turbulent reactive flows. Prog Energy Combust Sci, 19, 119–192. doi:10.1016/0360-1285(85)90002-4.
  • Stelzner, B., et al. 2013. Development of an inverse diffusion partial oxidation flame and model burner contributing to the development of 3rd generation coal gasifiers. Fuel Process Technol, 110, 33–45. doi:10.1016/j.fuproc.2013.01.005.
  • Sze, L.K., Cheung, C.S., and Leung, C.W. 2006. Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design. Combustion and Flame, 144, 237–248. doi:10.1016/j.combustflame.2005.07.008.
  • Turkeri, H., Zhao, X., Pope, S.B., and Muradogluc, M. 2019. Large eddy simulation/probability density function simulations of the Cambridge turbulent stratified flame series. Combustion and Flame, 199, 24–45. doi:10.1016/j.combustflame.2018.10.018.
  • Vicente, W., Salinas, M., Barrios, E., and Dopazo, C. 2004. PDF modeling of CO and NO formation in lean premixed methane flames. Combust Sci Technol, 176, 585–601. doi:10.1080/00102200490276809.
  • Waleed, A.A. 2015. Effect of CFD grid resolution and turbulent quantities on the jet flow prediction. ASHRAE Transactions, 121, 7–16.
  • Westbrook, K., and Dryer, L. 1984. Chemical kinetic modeling of hydrocarbon combustion. Prog Energy Combust Sci, 10, 1–57. doi:10.1016/0360-1285(84)90118-7.
  • Witze, P.O. 1975. A Study of Impinging Axisymmetric Turbulent Flows: The Wall Jet, the Radial Jet, and Opposing Free Jets. PhD thesis. Albuquerque, NM: Sandia National Labs.
  • Yakhot, V., and Orszag, S.A. 1992. Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A: Fluid Dyn, 7, 1510–1520. doi:10.1063/1.858424.
  • Zhen, H.S., Choy, Y.S., Leung, C.W., and Cheung, C.S. 2011. Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Appl Energy, 88, 2917–2924. doi:10.1016/j.apenergy.2011.02.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.