152
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effect of Interactions on Flow Field and Heat Transfer Characteristics for Three Corotating Dual Swirling Flames Impinging on a Flat Surface

&
Pages 701-727 | Received 12 Sep 2018, Accepted 07 Mar 2019, Published online: 03 Apr 2019

References

  • Astarita, T., Cardone, G., and Carlomagno, G.M. 2006. Infrared thermography: an optical method in heat transfer and fluid flow visualisation. Opt. Lasers Eng., 44, 261–281. doi:10.1016/j.optlaseng.2005.04.006
  • Baukal, C.E. 1996. Heat transfer from flame impinging normal to a plane surface. Ph.D. thesis, University of Pennsylvania, USA.
  • Baukal, C.E., and Gebhart, B. 1995. A review of flame impingement heat transfer-Part1: experimental conditions. Combust. Sci. Technol., 104, 339–357. doi:10.1080/00102209508907727
  • Beck, J.V., Blackwell, B., and Clair, C.R. 1985. Inverse Heat Conduction: Ill-Posed Problems, Wiley, USA.
  • Behbahani, A.I., and Goldstein, R.J. (1982). Local heat transfer to staggered arrays of impinging circular air jets. Proceedings of the 27th International Gas Turbine Conference and Exhibit, London, England, 18-22 April.
  • Cai, J., Jeng, S.M., and Tacina, R. (2002). Multi-swirler aerodynamics: comparison of different configurations. Proceedings of ASME Turbo Expo, ASME GT-2002-30464, pp. 1–10, Amsterdam, Netherlands, June 3-6.
  • Chander, S., and Ray, A. 2007. Heat transfer characteristics of three interacting methane/air flame jets impinging on a flat surface. Int. J. Heat Mass Transf., 50, 640–653. doi:10.1016/j.ijheatmasstransfer.2006.07.011
  • Chen, R.H., and Driscoll, J.F. 1988. The role of the recirculation vortex in improving fuel-air mixing within swirling flames. Proc. Combust. Inst., 22, 531–540. doi:10.1016/S0082-0784(89)80060-8
  • Diller, T.E. 1993. Advances in heat flux measurements. Adv. Heat Transfer, 23, 279–368.
  • Dong, L.L., Cheung, C.S., and Leung, C.W. 2003. Heat transfer of row of three butane/air flame jets impinging on a flat plate. Int. J. Heat Mass Transf., 46, 113–125. doi:10.1016/S0017-9310(02)00225-9
  • Dong, L.L., Cheung, C.S., and Leung, C.W. 2004. Heat transfer and wall pressure characteristics of twin premixed butane/air flame jets. Int. J. Heat Mass Transf., 47, 489–500. doi:10.1016/j.ijheatmasstransfer.2003.07.019
  • Fluent User Guide. 2003. Vol. 1-4, FLUENT 6.1.
  • Geers, L.F.G., Tummers, M.J., and Hanjalic´, K. 2004. Experimental investigation of impinging jet arrays. Exp. Fluids, 36, 946–958. doi:10.1007/s00348-004-0778-2
  • Goldstein, R.J., and Timmers, J.F. 1982. Visualization of heat transfer from arrays of impinging jets. Int. J. Heat Mass Transf., 25, 1857–1868. doi:10.1016/0017-9310(82)90108-9
  • Gupta, A.K., Lilley, D.G., and Syred, N. 1984. Swirl Flows, Kent & Cambridge, England, Abacus Press.
  • Hindasageri, V.K., Vedula, R.P., and Prabhu, S.V. 2014. Heat transfer distribution for impinging methane-air premixed flame jets. Appl. Therm. Eng., 73, 461–471. doi:10.1016/j.applthermaleng.2014.08.002
  • Hindasageri, V.K., Vedula, R.P., and Prabhu, S.V. 2015a. Heat transfer distribution of swirling flame jet impinging on a flat plate using twisted tapes. Int. J. Heat Mass Transf., 91, 1128–1139. doi:10.1016/j.ijheatmasstransfer.2015.08.038
  • Hindasageri, V.K., Vedula, R.P., and Prabhu, S.V. 2015b. Heat transfer distribution for three interacting methane-air premixed impinging flame jets. Int. J. Heat Mass Transf., 88, 914–925. doi:10.1016/j.ijheatmasstransfer.2015.04.098
  • Huber, A.M., and Viskanta, R. 1994. Comparison of convective heat transfer to perimeter and center jets in a confined, impinging array of axisymmetric air jets. Int. J. Heat Mass Transf., 31, 3025–3030. doi:10.1016/0017-9310(94)90357-3
  • Kao, Y.H., Tambe, S.B., and Jeng, S.M. (2013). Aerodynamics of linearly arranged rad-rad swirlers, effect of number of swirlers and alignment. Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition, San Antonio, Texas, USA, 3–7 June.
  • Kline, S.J., and McClintock, F.A. 1953. Describing uncertainties in single sample experiments. Mech. Eng., 75, 3–8.
  • Kwok, L.C., Cheung, C.S., and Leung, C.W. 2005. Heat transfer characteristics of an array of impinging pre-mixed slot flame jets. Int. J. Heat Mass Transf., 48, 1727–1738. doi:10.1016/j.ijheatmasstransfer.2004.11.014
  • Loubat, R., Reulet, P., Estebe, B., and Millan, P. 2004. Heat flux characterization in hot jet and flame/wall interaction by IHCP resolution coupled with infrared measurements. Quant. Infrared Thermogr. J., 1, 205–228. doi:10.3166/qirt.1.205-228
  • Luo, D.D., Zhen, H.S., Leung, C.W., and Cheung, C.S. 2010. Premixed flame impingement heat transfer with induced swirl. Int. J. Heat Mass Transf., 53, 4333–4336. doi:10.1016/j.ijheatmasstransfer.2010.05.048
  • Malikov, G.K., Lobanov, D.L., Malikov, K.Y., Lisienko, V.G., Viskanta, R., and Fedorov, A.G. 2001. Direct flame impingement heating for rapid thermal material processing. Int. J. Heat Mass Transf., 44, 1751–1758. doi:10.1016/S0017-9310(00)00204-0
  • Martin, H. 1977. Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Transfer, 13, 1–60.
  • Mohr, J.W., Seyed-Yagoobi, J., and Page, R.H. 1996. Combustion measurements from an impinging radial jet reattachment flame. Combust Flame, 106, 69–80. doi:10.1016/0010-2180(95)00246-4
  • Mohr, J.W., Seyed-Yagoobi, J., and Page, R.H. 1997a. Heat transfer characteristics of a radial jet re-attachment flames. J. Heat Transfer, 119, 258–264. doi:10.1115/1.2824218
  • Mohr, J.W., Seyed-Yagoobi, J., and Page, R.H. 1997b. Heat transfer from a pair of radial jet reattachment flames. J. Heat Transfer, 119, 633–635. doi:10.1115/1.2824153
  • Nortershauser, D., and Millan, P. 2000. Resolution of a three-dimensional unsteady inverse problem by sequential method using parameter reduction and infrared thermography measurements. Numer. Heat Transfer, 37, 587–611. doi:10.1080/104077800274109
  • Nuntadusit, C., Wae-Hayee, M., Bunyajitradulya, A., and Eiamsa-Ard, S. 2012. Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators. Int. Commun. Heat Mass Transfer, 39, 102–107. doi:10.1016/j.icheatmasstransfer.2011.10.003
  • Rodriguez, S.B., and El-Genk, M.S. (2010). Cooling of an isothermal plate using a triangular array of swirling air jets, Proceedings of the 14th International Heat Transfer Conference, pp. 1–10, Washington, DC, USA.
  • San, J.Y., and Chen, J.J. 2014. Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array. Int. J. Heat Mass Transf., 71, 8–17. doi:10.1016/j.ijheatmasstransfer.2013.11.079
  • San, J.Y., and Lai, M.D. 2001. Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets. Int. J. Heat Mass Transf., 44, 3997–4007. doi:10.1016/S0017-9310(01)00043-6
  • Singh, G., Chander, S., and Ray, A. 2012. Heat transfer characteristics of natural gas/air swirling flame impinging on a flat surface. Exp. Therm. Fluid Sci., 41, 165–176. doi:10.1016/j.expthermflusci.2012.04.013
  • Singh, P., and Chander, S. 2018. Heat transfer and fluid flow characteristics of a pair of interacting dual swirling flame jets impinging on a flat surface. Int. J. Heat Mass Transf., 124, 90–108. doi:10.1016/j.ijheatmasstransfer.2018.03.034
  • Singh, S., and Chander, S. 2014. Heat transfer characteristics of dual flame with outer swirling and inner non-swirling flame impinging on a flat surface. Int. J. Heat Mass Transf., 77, 995–1007. doi:10.1016/j.ijheatmasstransfer.2014.05.062
  • Tacina, K.M., Lee, C.M., and Wey, C. (2008). NASA Glenn high pressure low NOx emissions research. NASA STI program, NASA/TM-2008-214974, February 2008.
  • Tangirala, V., Chen, R.H., and Driscoll, J.F. 1987. Effect of heat release and swirl on recirculation within swirl stabilized flames. Combust. Sci. Technol., 51, 75–95. doi:10.1080/00102208708960316
  • Viskanta, R. 1993. Heat transfer to impinging isothermal gas and flame jets. Exp. Therm. Fluid Sci., 6, 111–134. doi:10.1016/0894-1777(93)90022-B
  • Wald, A.E., and Salisbury, J.W. 1995. Thermal infrared directional emissivity of powdered quartz. J. Geophys. Res., 100, 665–675. doi:10.1029/95JB02400
  • Wannassi, M., and Monnoyer, F. 2015. Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Appl. Therm. Eng., 78, 62–73. doi:10.1016/j.applthermaleng.2014.12.043
  • Wu, J., Yagoobi, J.S., and Page, R.H. 2001. Heat transfer and combustion characteristics of an array of radial jet re-attachment flames. Combust Flame, 125, 955–964. doi:10.1016/S0010-2180(00)00251-0
  • Yang, S.L., Siow, Y.K., Peschke, B.D., and Tacina, R.R. 2003a. Numerical study of non-reacting gas turbine combustor swirl flow using Reynolds stress model. J. Eng. Gas Turbine Power., 125, 804–811. doi:10.1115/1.1560706
  • Yang, S.L., Siow, Y.K., Teo, C.Y., Tacina, R.R., Iannetti, A.C., and Penko, P.F. 2003b. Numerical study of lean-direct injection combustor with discrete-jet swirlers using Reynolds stress model. J. Eng. Gas Turbine Power., 125, 1059–1065. doi:10.1115/1.1610012
  • Zhen, H.S., Leung, C.W., and Cheung, C.S. 2009. Heat transfer from a turbulent swirling inverse diffusion flame to a flat surface. Int. J. Heat Mass Transf., 52, 2740–2748. doi:10.1016/j.ijheatmasstransfer.2008.12.010
  • Zhen, H.S., Leung, C.W., and Cheung, C.S. 2012. Heat transfer characteristics of an impinging premixed annular flame jet. Appl. Therm. Eng., 36, 386–392. doi:10.1016/j.applthermaleng.2011.10.053
  • Zhen, H.S., Leung, C.W., and Wong, T.T. 2013. Improvement of domestic cooking flames by utilizing swirling flows. Fuel, 119, 153–156. doi:10.1016/j.fuel.2013.11.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.