122
Views
4
CrossRef citations to date
0
Altmetric
Short Communications

Flow Reactor Experimental Study of H2/O2 and H2/Air Mixtures Ignition Assisted by the Electrical Discharge

ORCID Icon, , , ORCID Icon &
Pages 744-759 | Received 15 Nov 2018, Accepted 08 Mar 2019, Published online: 02 Apr 2019

References

  • Adamovich, I.V., Baalrud, S.D., Bogaerts, A., Bruggeman, P.J., Cappelli, M., Colombo, V., et al. 2017. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D, 50, 323001. doi:10.1088/1361-6463/aa76f5
  • Adamovich, I.V., and Lempert, W.R. 2014. Challenges in understanding and predictive model development of plasma-assisted combustion. Plasma Phys. Control. Fusion, 57, 014001. doi:10.1088/0741-3335/57/1/014001
  • Basevich, V.Y., and Kogarko, S.M. 1966. To mechanism of the influence of glow discharge products on the hydrogen-oxygen flame velocity in conditions of inflammation peninsula. Kinet. Catal., 7, 393–399 (in Russian).
  • Brown, L.R., and Plymate, C. 2000. Experimental line parameters of the oxygen A band at 760 nm. J. Mol. Spectrosc., 199, 166–179. doi:10.1006/jmsp.1999.8012
  • Burns, K., Adams, K.B., and Longwell, J. 1950. Interference measurements in the spectra of neon and natural mercury. JOSA, 40, 339–344. doi:10.1364/JOSA.40.000339
  • Chukalovsky, A.A., Klopovsky, K.S., Liberman, M.A., Mankelevich, N.A., Popov, N.A., Proshina, O.V., and Rakhimova, T.V. 2012. Study of singlet delta oxygen O2(1Δg) impact on H2–O2 mixture ignition in flow reactor: 2D modeling. Combust. Sci. Technol., 184, 1768–1786. doi:10.1080/00102202.2012.690980
  • Ju, Y., and Sun, W. 2015. Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combust. Sci., 48, 21–83. doi:10.1016/j.pecs.2014.12.002
  • Konnov, A.A. 2015. On the role of excited species in hydrogen combustion. Combust. Flame, 162, 3755–3772. doi:10.1016/j.combustflame.2015.07.014
  • Kozlov, V.E., Starik, A.M., and Titova, N.S. 2008. Enhancement of combustion of a hydrogen-air mixture by excitation of O2 molecules to the a1Δg state. Combust. Explos. Shock Waves, 44, 371–379. doi:10.1007/s10573-008-0062-5
  • Kuramochi, A., Takahashi, E., Asakawa, D., Saito, N., and Nishioka, M. 2018. Flame propagation enhancement by dielectric barrier discharge-generated intermediate species. Combust. Sci. Technol., in press. doi:10.1080/00102202.2018.1540470
  • Molina, L.T., and Molina, M.J. 1986. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res., 91, 14501–14508. doi:10.1029/JD091iD13p14501
  • Ombrello, T., and Popov, N. 2015. Mechanisms of ethylene flame propagation enhancement by O2(a1Δg). AerospaceLab, 10, AL10–07.
  • Pineda, D.I., Wolk, B., Sennott, T., Chen, J.-Y., Dibble, R.W., and Singleton, D. 2017. The role of hydrodynamic enhancement on ignition of lean methane-air mixtures by pulsed nanosecond discharges for automotive engine applications. Combust. Sci. Technol., 189, 2023–2037. doi:10.1080/00102202.2017.1334647
  • Popov, N.A. 2016. Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures. Plasma Sources Sci. Technol., 25, 043002. doi:10.1088/0963-0252/25/4/043002
  • Rakhimova, T., Kovalev, A., Klopovsky, K., Lopaev, D., Mankelevich, Y., and Vasilieva, A. 2005. Experimental and theoretical study of a pressure scaling possibility of VHF singlet oxygen generator. 36th AIAA Plasmadynamics and Lasers Conference, Toronto, Ontario, Canada, June 6–9, 2005. AIAA Paper 2005–4918. doi:10.2514/6.2005-4918
  • Ryskin, M.E., and Shub, B.R. 1981. Heterogeneous relaxation of singlet oxygen. React. Kinet. Catal. Lett., 17, 41–46 (in Russian).
  • Sander, S.P., Golden, D.M., Kurylo, M.J., Moortgat, G.K., Wine, P.H., Ravishankara, A.R., Kolb, C.E., Molina, M.J., Finlayson-Pitts, B.J., Huie, R.E., et al. 2006. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15. Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA.
  • Schweitzer, C., and Schmidt, R. 2003. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev., 103, 1685–1758. doi:10.1021/cr010371d
  • Sharipov, A.S., Loukhovitski, B.I., Pelevkin, A.V., Kobtsev, V.D., and Kozlov, D.N. 2019. Polarizability of electronically excited molecular oxygen: theory and experiment. J. Phys. B: At. Mol. Opt. Phys., 52, 045101. doi:10.1088/1361-6455/aaf9d9
  • Smirnov, V.V., Starik, A.M., Stelmakh, O.M., Titova, N.S., and Chernukho, A.P. 2011. Computational and experimental study of the intensification of chain processes in the H2-O2(air) mixture by the excitation of O2 molecules in the electric discharge. Nonequilibrium Physicochemical Processes in Gas Flows and New Principles of the Organization of Combustion (Ed. Starik, A.M.). Torus Press, Moscow, pp. 449–465 (in Russian).
  • Smirnov, V.V., Stelmakh, O.M., Fabelinsky, V.I., Kozlov, D.N., Starik, A.M., and Titova, N.S. 2008. On the influence of electronically excited oxygen molecules on combustion of hydrogen–oxygen mixture. J. Phys. D, 41, 192001. doi:10.1088/0022-3727/41/19/192001
  • Starik, A., and Sharipov, A. 2011. Theoretical analysis of reaction kinetics with singlet oxygen molecules. Phys. Chem. Chem. Phys., 13, 16424–16436. doi:10.1039/c1cp21236b
  • Starik, A.M., Kuleshov, P.S., Loukhovitski, B.I., and Titova, N.S. 2015. Theoretical study of partial oxidation of methane by non-equilibrium oxygen plasma to produce hydrogen rich syngas. Int. J. Hydrogen Energy, 40, 9872–9884. doi:10.1016/j.ijhydene.2015.06.066
  • Starik, A.M., Kuleshov, P.S., Sharipov, A.S., Strelnikova, V.A., and Titova, N.S. 2013. On the influence of singlet oxygen molecules on the NOx formation in methane-air laminar flame. Proc. Combust. Inst., 34, 3277–3285. doi:10.1016/j.proci.2012.10.003
  • Starik, A.M., Pelevkin, A.V., and Titova, N.S. 2017. Modeling study of the acceleration of ignition in ethane–air and natural gas–air mixtures via photochemical excitation of oxygen molecules. Combust. Flame, 176, 81–93. doi:10.1016/j.combustflame.2016.10.005
  • Starik, A.M., and Titova, N.S. 2003. Kinetics of detonation initiation in the supersonic flow of the H2+O2 (air) mixture in O2 molecule excitation by resonance laser radiation. Kinet. Catal., 44, 28–39. doi:10.1023/A:1022564500133
  • Starik, A.M., Titova, N.S., Bezgin, L.V., Kopchenov, V.I., and Naumov, V.V. 2006. Control of combustion by generation of singlet oxygen molecules in electrical discharge. Czechoslov. J. Phys., 56, B1357–1363. doi:10.1007/s10582-006-0374-1
  • Starik, A.M., Titova, N.S., and Sharipov, A.S. 2010. Kinetic mechanism of H2-O2 ignition promoted by singlet oxygen O2(a1∆g). Deflagrative and Detonative Combustion (Eds. Roy, G.D., and Frolov, S.M.). Torus Press, Moscow, pp. 19–42.
  • Starikovskaia, S.M. 2014. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms. J. Phys. D, 47, 353001. doi:10.1088/0022-3727/47/35/353001
  • Starikovskiy, A. (Ed.). 2015. Physics and chemistry of plasma-assisted combustion. Phil. Trans. R. Soc. A, 373, 2048. doi:10.1098/rsta.2015.0074
  • Starikovskiy, A., and Aleksandrov, N. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci., 39, 61–110. doi:10.1016/j.pecs.2012.05.003
  • Vagin, N.P., Kochetov, I.V., Napartovich, A.P., and Yuryshev, N.N. 2016. Influence of chemically produced singlet delta oxygen molecules on thermal ignition of O2–H2 mixtures. J. Phys. D, 49, 055505. doi:10.1088/0022-3727/49/5/055505

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.