205
Views
5
CrossRef citations to date
0
Altmetric
Articles

Optimization of Activated Carbon Monolith Co3O4-Based Catalyst for Simultaneous SO2/NOx Removal from Flue Gas Using Response Surface Methodology

, , & ORCID Icon
Pages 786-803 | Received 20 Oct 2018, Accepted 11 Mar 2019, Published online: 26 Mar 2019

References

  • Assebban, M., Tian, Z., El Kasmi, A., Bahlawane, N., Harti, S., and Chafik, T. 2015. Catalytic complete oxidation of acetylene and propene over clay versus cordierite honeycomb monoliths without and with chemical vapor deposited cobalt oxide. Chem. Eng. J., 253, 1252–1259. doi: 10.1016/j.cej.2014.10.093.
  • Bas, D., and Boyaci, I.H. 2007. Modeling and optimization: usability of response surface methodology. J. Food Eng., 78, 836–845. doi: 10.1016/j.jfoodeng.2005.11.024.
  • Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., and Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977. doi: 10.1016/j.talanta.2008.05.019.
  • Chaudhary, N., and Balomajumder, C. 2014. Optimization study of adsorption parameters for removal of phenol on aluminum impregnated fly ash using response surface methodology. J. Taiwan Inst. Chem. Eng., 45, 852–859. doi: 10.1016/j.jtice.2013.08.016.
  • Dahlan, I., Lee, K.T., Kamaruddin, A.H., and Mohamed, A.R. 2009. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal. J. Hazard Mater., 166, 1556–1559. doi: 10.1016/j.jhazmat.2008.12.028.
  • Dey, S., Dhal, G.C., Prasad, R., and Mohan, D. 2017. Effect of nitrate metal (Ce, Cu, Mn and Co) precursors for the total oxidation of carbon monoxide. Resource-Effic. Technol., 3, 1–11.
  • Dipa, D., and Bhim, M.C. 2017. Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2 capture and applied to methylene blue adsorption by response surface methodology. J. Environ. Sci. Health, Part A, 1–9.
  • Du, A., Zhou, B., Shen, J., Xiao, S., Zhang, Z., Liu, C., and Zhang, M. 2009. Monolithic copper oxide aerogel via dispersed inorganic sol–gel method. J. Non-Crystalline Sol., 355, 175–181. doi: 10.1016/j.jnoncrysol.2008.11.015.
  • Fang, H.B., Zhao, J.T., Fang, Y.T., Huang, J.J., and Wanga, Y. 2013. Selective oxidation of hydrogen sulfide to sulfur over activated carbon-supported metal oxides. Fuel, 108, 143–148. doi: 10.1016/j.fuel.2011.05.030.
  • Ghorbani, F., Younesi, H., Ghasempouri, S., Zinatizadeh, A.A., Amini, M., and Daneshi, A. 2008. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J, 145, 267–275. doi: 10.1016/j.cej.2008.04.028.
  • Groppi, G., and Tronconi, E. 2005. Honeycomb supports with high thermal conductivity for gas/solid chemical processes. Catal. Today, 105, 297–304. doi: 10.1016/j.cattod.2005.06.041.
  • Hosseini, S., Marahel, E., Bayesti, I., Abbasi, A., Abdullah, L.C., and Choong, T.S.Y. 2015. CO2 adsorption on modified carbon coated monolith: effect of surface modification by using alkaline solutions. Appl. Surf. Sci., 324, 569–575. doi: 10.1016/j.apsusc.2014.10.054.
  • Hosseini, S., Rashid, S.A., Abbasi, A., Babadi, F.E., Abdullah, L.C., and Choong, T.S.Y. 2016. Effect of catalyst and substrate on growth characteristics of carbon nanofiber onto honeycomb monolith. Revis. Mexic. De Urol., 76(1), 440–449.
  • Kalavathy, H.M., Regupathi, I., Pillai, M.G., and Miranda, L.R. 2009. Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Col. Surf. B: Bioint., 70, 35–45. doi: 10.1016/j.colsurfb.2008.12.007.
  • Karen, P., Astrid, S., and Juan, F.E. 2018. Thermodynamic evaluation of carbon dioxide gasification reactions at oxy-combustion conditions. Combust. Scie. Technol., 190, 1–14. doi: 10.1080/00102202.2018.1454916
  • Katre, G., Raskar, S., Zinjarde, S., Kumar, V.R., Kulkarni, B.D., and Kumar, A.R. 2018. Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy, 142, 944–952. doi: 10.1016/j.energy.2017.10.082.
  • Kiman, S., Ghani, W.A.W.A.K., Choong, T.S.Y., and Rashid, U. 2018. Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: a review. Catal. Revi., 61, 1–29. doi: 10.1080/01614940.2018.1482641
  • Kreutzer, M., Du, P., Heiszwolf, J.J., Kapteijn, F., and Moulijn, J.A. 2001. Mass transfer characteristics of three-phase monolith reactors. Chem. Eng. Sci., 56, 6015–6023. doi: 10.1016/S0009-2509(01)00271-8.
  • Lapham, D.P., and Julie, L.L. 2017. Gas adsorption on commercial magnesium stearate: effects of degassing conditions on nitrogen BET surface area and isotherm characteristics. Int. J. Pharm., 530, 364–376. doi: 10.1016/j.ijpharm.2017.08.003.
  • Lau, L.C., Lee, K.T., and Mohamed, A.R. 2011. Simultaneous SO2 and NO removal using sorbents derived from rice husks: an optimization study. Fuel, 90, 1811–1817. doi: 10.1016/j.fuel.2010.12.009.
  • Li, E., Kobayashi, N., and Hu, Y. 2008. The activated coke preparation for SO2 adsorption by using flue gas from coal power plant. Chem. Eng. Proc., 47, 118–127. doi: 10.1016/j.cep.2007.08.001.
  • Li, Y., Zhao, J., Dan, Y., Ma, D., Zhao, Y., Hou, S., Lin, H., and Wang, Z. 2011. Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chem. Eng. J., 166, 428–434. doi: 10.1016/j.cej.2010.10.080.
  • Liu, B., Peng, J., Zhang, L., Wana, R., Guo, S., and Zhou, L. 2010. Optimization of preparation for Co3O4 by calcination from cobalt oxalate using response surface methodology. Chem. Eng. Resour. Desal., 88, 971–976. doi: 10.1016/j.cherd.2010.02.004.
  • Liu, Y., Liu, Z., Wang, Y., Yin, Y., Pan, J., Zhang, J.J., and Wang, J. 2018. Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat co activated per sulfate system. J. Hazard Mater., 342, 326–334. doi: 10.1016/j.jhazmat.2017.08.042.
  • Neyestanaki, A.K., Klingstedt, F., Salmi, T., and Yu, D. 2004. Deactivation of post-combustion catalysts a review. Fuel, 83, 395–408. doi: 10.1016/j.fuel.2003.09.002.
  • Nyashina, S.G., Kuznetsov, V.G., and Strizhak, P.A. 2018. Energy efficiency and environmental aspects of the combustion of coal-water slurries with and without petrochemicals. J. Cleaner Prod., 172, 1730–1738. doi: 10.1016/j.jclepro.2017.12.023.
  • Premkumar, M., and Shanthakumar, S. 2013. Process optimization for Cr (VI) removal by Mangifera Indica seed powder: a response surface methodology approach. Des. Water Treat, 53, 1–11. doi: 10.1080/19443994.2013.857615
  • Ren, X., Sun, R., Meng, X., Vorobiev, N., Schiemann, M., and Levendis, Y.A. 2017. Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass. Fuel, 188, 310–323. doi: 10.1016/j.fuel.2016.10.017.
  • Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., and Turek, T. 2004. Monoliths as multiphase reactors: a review. AIChE J., 11, 2918–2938. doi: 10.1002/aic.10268.
  • Silas, K., Azlina, G.W., Thomas, C.Y., and Umer, R. 2018b. Activated carbon monolith Co3O4 based catalyst: synthesis, characterization and adsorption studies. Environ. Technol. Inno., 12, 273–285. doi: 10.1016/j.eti.2018.10.008.
  • Silas, K., Azlina, W., Ab, W., Ghani, K., Shean, T., Choong, Y., and Rashid, U. 2018a. Breakthrough studies of Co3O4 supported activated carbon monolith for simultaneous SO2 /NOx removal from fl ue gas. Fuel Proc. Technol., 180, 155–165. doi: 10.1016/j.fuproc.2018.08.018.
  • Singh, R., Chadetrika, R., Kumara, R., Bishnoi, K., Bhatia, D., Kumara, A., Bishnoi, N.R., and Singh, S. 2010. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling. J. Hazard Mater., 174, 623–634. doi: 10.1016/j.jhazmat.2009.09.097.
  • Sumathi, S., Bhatia, L.C., Lee, K.T., and Mohamed, A.R. 2010. Adsorption isotherm models and properties of SO2 and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC). Chem. Eng. J., 162, 194–200. doi: 10.1016/j.cej.2010.05.028.
  • Tan, I.A., Ahmad, A.L., and Hameed, B.H. 2008. Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem. Eng. J., 137, 462–470. doi: 10.1016/j.cej.2007.04.031.
  • Thiruvenkatachari, R., Su, S., Xiang, X., and Yonggang, Y. 2015. A site trial demonstration of CO2 capture from real flue gas by novel carbon fibre composite monolith adsorbents. Int. J. Greenhouse Gas Cont., 42, 415–423. doi: 10.1016/j.ijggc.2015.08.018.
  • Titus, S.V., Johan, A., and Martens, A. 2011. Standardization for BET fitting of adsorption isotherms. Microp. Mesop. Mater., 145, 188–193. doi: 10.1016/j.micromeso.2011.05.022.
  • Wei, B., Kueh, B., Yusup, S., and Osman, Y. 2018. Supercritical carbon dioxide extraction of Melaleuca cajuputi leaves for herbicides allelopathy: optimization and kinetics modeling. J. CO₂ Util., 24, 220–227. doi: 10.1016/j.jcou.2018.01.005.
  • Wu, G., Feng, X., Zhang, H., Zhang, Y., Wang, J., Chen, Y., and Dan, Y. 2018. The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NOx with NH3. Appl. Surf. Sci., 427, 24–36. doi: 10.1016/j.apsusc.2017.08.135.
  • Yuanguang, Z., Youcun, C., Tao, W., Juhong, Z.A., and Yinguo, Z. 2008. Synthesis and magnetic properties of nanoporous Co3O4 nanoflowers. Micropor. Mesopor. Mater., 114, 257–261. doi: 10.1016/j.micromeso.2008.01.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.