135
Views
0
CrossRef citations to date
0
Altmetric
Articles

Laminar Flame Propagation in a Premixed Particle Cloud: Effect of Vaporization Rate

Pages 804-831 | Received 30 Oct 2018, Accepted 11 Mar 2019, Published online: 12 Apr 2019

References

  • Bermúdez, A., Ferrín, J.L., and Liñán, A. 2007. The modelling of the generation of volatiles, H2 and CO, and their simultaneous diffusion controlled oxidation, in pulverized coal furnaces. Combust. Theor. Model., 11(6), 949–976. doi: 10.1080/13647830701316640.
  • Bermúdez, A., Ferrín, J.L., Liñán, A., and Saavedra, L. 2011. Numerical simulation of group combustion of pulverized coal. Combust. Flame, 158(9), 1852–1865. doi: 10.1016/j.combustflame.2011.02.002.
  • Bidabadi, M., Beidaghy Dizaji, H., Faraji Dizaji, F., and Mostafavi, S.A. 2015. A parametric study of lycopodium dust flame. J. Eng. Math., 92(1), 147–165. doi: 10.1007/s10665-014-9769-3.
  • Bidabadi, M., Haghiri, A., and Rahbari, A. 2010. The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles. Int. J. Therm. Sci., 49(3), 534–542. doi: 10.1016/j.ijthermalsci.2009.10.002.
  • Cloney, C.T., Ripley, R.C., Pegg, M.J., and Amyotte, P.R. 2018. Laminar burning velocity and structure of coal dust flames using a unity Lewis number CFD model. Combust. Flame, 190, 87–102. doi: 10.1016/j.combustflame.2017.11.010.
  • Deshaies, B., and Joulin, G. 1986. Radiative transfer as a propagation mechanism for rich flames of reactive suspensions. Siam Journal on Applied Mathematics, 46(4), 561–581.
  • Eckhoff, R.K. 1997. Dust Explosions in the Process Industries, Butterworth-Heinemann, Oxford, 2nd ed.
  • Gao, W., Mogi, T., Yu, J., Yan, X., Sun, J., and Dobashi, R. 2015. Flame propagation mechanisms in dust explosions. J. Loss Prevent. Proc. Ind., 36, 186–194. doi: 10.1016/j.jlp.2014.12.021.
  • Joulin, G. 1987. Temperature-Lags and Radiative Transfer in Particle-Laden Gaseous Flames Part I: Steady Planar Fronts. Combustion Science and Technology, 52(4–6), 377–395.
  • Joulin, G., and Deshaies, B. 1986. On radiation-affected flame propagation in gaseous mixtures seeded with inert particles. Combustion Science and Technology, 47(5–6), 299–315.
  • Krazinski, J.L., Buckius, R.O., and Krier, H. 1979. Coal dust flames: A review and development of a model for flame propagation. Prog. Energy Combust. Sci., 5(1), 31–71. doi: 10.1016/0360-1285(79)90018-2.
  • Liberman, M., Ivanov, M., and Kiverin, A. 2015. Radiation heat transfer in particle-laden gaseous flame: flame acceleration and triggering detonation. Acta Astronautica, 115, 82–93.
  • Liñán, A. 1974. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronaut., 1(7–8), 1007–1039. doi: 10.1016/0094-5765(74)90066-6.
  • Mitani, T. 1980. Propagation velocities of two-reactant flames. Combust. Sci. Technol., 21(3–4), 175–177. doi: 10.1080/00102208008946931.
  • Nakamura, M., Akamatsu, F., Kurose, R., and Katsuki, M. 2005. Combustion mechanism of liquid fuel spray in a gaseous flame. Phys. Fluids, 17(12), 1–14. doi: 10.1063/1.2140294.
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, Toulouse, 3rd ed.
  • Proust, C. 2006a. A few fundamental aspects about ignition and flame propagation in dust clouds. J. Loss Prevent. Proc. Ind., 19(2–3), 104–120. doi: 10.1016/j.jlp.2005.06.035.
  • Proust, C. 2006b. Flame propagation and combustion in some dust-air mixtures. J. Loss Prevent. Proc. Ind., 19(1), 89–100. doi: 10.1016/j.jlp.2005.06.026.
  • Proust, C., Ben~Moussa, R., Guessasma, M., Saleh, K., and Fortin, J. 2017. Thermal radiation in dust flame propagation. Journal of Loss Prevention in the Process Industries, 49, 896–904.
  • Rockwell, S.R., and Rangwala, A.S. 2013. Modeling of dust air flames. Fire Saf. J., 59, 22–29. doi: 10.1016/j.firesaf.2013.03.006.
  • Seshadri, K., Berlad, A.L., and Tangirala, V. 1992. The structure of premixed particle- cloud flames. Combust. Flame, 89(3–4), 333–342. doi: 10.1016/0010-2180(92)90019-L.
  • Slezak, S.E., Buckius, R.O., and Krier, H. 1985. A model of flame propagation in rich mixtures of coal dust in air. Combust. Flame, 59(3), 251–265. doi: 10.1016/0010-2180(85)90129-4.
  • Smoot, L.D., and Horton, M.D. 1977. Propagation of laminar pulverized coal-air flames. Prog. Energy Combust. Sci., 3(4), 235–258. doi: 10.1016/0360-1285(77)90014-4.
  • Williams, F.A. 1985. Combustion Theory, Benjamin Cummings, Menlo Park CA, 2nd ed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.