1,134
Views
7
CrossRef citations to date
0
Altmetric
Articles

Dissipation Element Analysis of Turbulent Premixed Jet Flames

, , , , &
Pages 1677-1692 | Received 11 Sep 2018, Accepted 03 Apr 2019, Published online: 21 Apr 2019

References

  • Antonia, R.A., and Sreenivasan, K.R. 1977. Log-normality of temperature dissipation in a turbulent boundary layer. Phys. Fluids, 20, 1800–1804. doi:10.1063/1.861795
  • Bisset, D.K., Julian, C.R., and Hunt, M.M.R. 2002. The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech., 451, 383–410. doi:10.1017/S0022112001006759
  • Gampert, M., et al. 2011. Compressive and extensive strain along gradient trajectories in the turbulent kinetic energy field. New J. Phys., 13, 16.
  • Gampert, M., Kleinheinz, K., Peters, N., and Pitsch, H. 2014. Experimental and numerical study of the scalar turbulent/non-turbulent interface in a Jet flow. ‎Flow Turbul. Combust., 92, 429–449. doi:10.1007/s10494-013-9471-y
  • Gampert, M., Schaefer, P., Goebbert, J.H., and Peters, N. 2013a. Decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain. Physica Scripta, 155, 014002. doi:10.1088/0031-8949/2013/T155/014002
  • Gampert, M., Schaefer, P., Narayanaswamy, V., and Peters, N. 2013b. Gradient trajectory analysis in a Jet flow for turbulent combustion modelling. J. Turbul., 14, 147–164. doi:10.1080/14685248.2012.747688
  • Gampert, M., Schaefer, P., and Peters, N. 2013c. Experimental investigation of dissipation-element statistics in scalar fields in a jet flow. J. Fluid Mech., 724, 337–366. doi:10.1017/jfm.2013.171
  • Gauding, M. 2014. Statistics and Scaling Laws of Turbulent Scalar Mixing at High Reynolds Numbers, RWTH Aachen University.
  • Gauding, M., et al. 2017. Dissipation element analysis of a turbulent non-premixed jet flame. Phys. Fluids, 29.
  • Holzer, M., and Siggia, E.D. 1994. Turbulent mixing of a passive scalar. Phys. Fluids, 6, 1820–1837. doi:10.1063/1.868243
  • Hunger, F., Gauding, M., and Hasse, C. 2016. On the impact of the turbulent/non-turbulent interface on differential diffusion in a turbulent jet flow. J. Fluid Mech., 802.
  • Luca, S., Al-Khateeb, A.N., Attili, A., and Bisetti, F. 2018. Comprehensive validation of skeletal mechanism for turbulent premixed methane–air flame simulations. J. Prop. Power, 34.1, 153–160. doi:10.2514/1.B36528
  • Luca, S., Attili, A., et al. 2019. On the statistics of flame stretch in turbulent premixed jet flames in the thin reaction zone regime at varying Reynolds number. Proc. Combust. Inst, 37, 2451–2459.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press.
  • Peters, N., Kerschgens, B., and Paczko, G. 2013. Super-Knock prediction using a refined theory of turbulence. SAE Int. J. Engines, 6, 953–967. doi:10.4271/2013-01-1109
  • Peters, N., and Wang, L. 2006. Dissipation element analysis of scalar fields in turbulence. C. R. Mechanique, 334, 493–506. doi:10.1016/j.crme.2006.07.006
  • Schaefer, L., et al. 2011. Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic-particle image velocimetry. Phys. Fluids, 23. doi:10.1063/1.3556742
  • Schaefer, P., Gampert, M., Goebbert, J., Wang, L., Peters, N. 2010. Testing of Model Equations for the Mean Dissipation using Kolmogorov Flows, Flow, Turbulence and Combustion, 85 (2): 225–243. doi:10.1007/s10494-010-9273-4
  • Scholtissek, A., Dietzsch, F., Gauding, M., and Hasse, C. 2017. No In-situ tracking of mixture fraction gradient trajectories and unsteady flamelet analysis in turbulent non-premixed combustion. Comb. Flame, 243–258. doi:10.1016/j.combustflame.2016.07.011
  • Wang, L. 2009. Structure function of two-point velocity difference along scalar gradient trajectories in fluid turbulence. Phys. Rev. E, 79.
  • Wang, L., and Peters, N. 2006. The length scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech., 554, 457–475. doi:10.1017/S0022112006009128
  • Wang, L., and Peters, N. 2008. The Length scale distribution functions and conditional means for various fields in turbulence. J. Fluid Mech., 608, 113–138. doi:10.1017/S0022112008002139