304
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Improving the Prediction Accuracy of the Extinction of Stretched Methanol/Air Premixed Flames

, , , , &
Pages 1088-1107 | Received 10 Jan 2019, Accepted 17 Apr 2019, Published online: 05 May 2019

References

  • Airy, S.G.B. 1879. Theory of Errors of Observation, Macmillan, London.
  • Aniolek, K.W., and Wilk, R.D. 1995. Preflame oxidation characteristics of methanol. Energy & Fuels, 9, 395–405. doi:10.1021/ef00051a002
  • Aranda, V., Christensen, J.M., Alzueta, M., Glarborg, P., Gersen, S., Gao, Y., and Marshall, P. 2013. Experimental and kinetic modeling study of methanol ignition and oxidation at high pressure. Int. J. Chem. Kinet., 45, 283–294. doi:10.1002/kin.2013.45.issue-5.
  • Beeckmann, J., Cai, L., and Pitsch, H. 2014. Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure. Fuel, 117, 340–350. doi:10.1016/j.fuel.2013.09.025
  • Bowman, C.T. 1975. A shock-tube investigation of the high-temperature oxidation of methanol. Combus. Flame, 25, 343–354. doi:10.1016/0010-2180(75)90106-6
  • Burke, U., Metcalfe, W.K., Burke, S.M., Heufer, K.A., Dagaut, P., and Curran, H.J. 2016. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combust. Flame, 165, 125–136. doi:10.1016/j.combustflame.2015.11.004
  • Burrell, R.R., Zhao, R., Lee, D.J., Burbano, H., and Egolfopoulos, F.N. 2017. Two-dimensional effects in counterflow methane flames. Proceedings of the Combustion Institute, Republic of Korea, Vol. 36, pp. 1387–1394. doi:10.1016/j.proci.2016.06.071
  • Cathonnet, M., Boettner, J.-C., and James, H. 1979. Étude expérimentale et simulation de la pyrolyse du méthanol. J. Chim. Phys., 76, 183–189. doi:10.1051/jcp/1979760183
  • Chemical-kinetic mechanisms for combustion applications, version. 2016 February 14. San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research). University of California at San Diego. http://combustion.ucsd.edu
  • Cooke, D.F., Dodson, M.G., and Williams, A. 1971. A shock-tube study of the ignition of methanol and ethanol with oxygen. Combust. Flame, 16, 233–236. doi:10.1016/S0010-2180(71)80093-7
  • Das, M., Chakraborty, A., Datta, A., and Santra, A.K. 2017. Experimental studies on burning characteristics of methanol, diesel, and sunflower biodiesel fuels. Combust. Sci. Technol., 189, 213–230. doi:10.1080/00102202.2016.1206085
  • Davis, S.G., and Law, C.K. 1998. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust. Sci. Technol., 140, 427–449. doi:10.1080/00102209808915781
  • Egolfopoulos, F., Du, D.X., and Law, C.K. 1992. A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes. Combust. Sci. Technol., 83, 33–75. doi:10.1080/00102209208951823
  • Egolfopoulos, F.N. 1994. Geometric and radiation effects on steady and unsteady strained laminar flames. Symp. (Int.) Combust., 25, 1375–1381. doi:10.1016/S0082-0784(06)80780-0
  • Fernández-Tarrazo, E., Sánchez-Sanz, M., Sánchez, A.L., and Williams, F.A. 2016. A multipurpose reduced chemical-kinetic mechanism for methanol combustion. Combust. Theory Modell., 20, 613–631. doi:10.1080/13647830.2016.1162330
  • Fieweger, K., Blumenthal, R., and Adomeit, G. 1997. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure. Combust. Flame, 109, 599–619. doi:10.1016/S0010-2180(97)00049-7
  • Gao, L.G., Zheng, J., Fernandez-Ramos, A., Truhlar, D.G., and Xu, X. 2018. Kinetics of the methanol reaction with oh at interstellar, atmospheric, and combustion temperatures. J. Am. Chem. Soc., 140, 2906–2918. doi:10.1021/jacs.7b12773.
  • Gibbs, G.J., and Calcote, H.F. 1959. Effect of molecular structure on burning velocity. J. Chem. Eng. Data, 4, 226–237. doi:10.1021/je60003a011
  • Gulder, Ö.L. 1983. Laminar burning velocities of methanol, isooctane and isooctane/methanol blends. Combust. Sci. Technol., 33, 179–192. doi:10.1080/00102208308923674
  • Gülder, Ö.L. 1982. Laminar burning velocities of methanol, ethanol and isooctane-air mixtures. Symp. (Int.) Combust., 19, 275–281. doi:10.1016/S0082-0784(82)80198-7
  • Held, T., and Dryer, F. 1998. A comprehensive mechanism for methanol oxidation. Int. J. Chem. Kinet., 30, 805–830. doi:10.1002/(ISSN)1097-4601
  • Holley, A.T., Dong, Y., Andac, M.G., and Egolfopoulos, F.N. 2006. Extinction of premixed flames of practical liquid fuels: experiments and simulations. Combust. Flame, 144, 448–460. doi:10.1016/j.combustflame.2005.08.001
  • Hong, Z., Davidson, D.F., and Hanson, R.K. 2011. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame, 158, 633–644. doi:10.1016/j.combustflame.2010.10.002
  • Ing, W.C., Sheng, C.Y., and Bozzelli, J.W. 2003. Development of a detailed high-pressure reaction model for methane/methanol mixtures under pyrolytic and oxidative conditions and comparison with experimental data. Fuel Process. Technol., 83, 111–145. doi:10.1016/S0378-3820(03)00062-6
  • Jayachandran, J., and Egolfopoulos, F.N. 2017. Thermal and Ludwig–soret diffusion effects on near-boundary ignition behavior of reacting mixtures. Proceedings of the Combustion Institute, Republic of Korea, Vol. 36, pp. 1505–1511. doi:10.1016/j.proci.2016.06.098
  • Ji, C., Dames, E., Wang, Y.L., Wang, H., and Egolfopoulos, F.N. 2010. Propagation and extinction of premixed C5–c12n-alkane flames. Combust. Flame, 157, 277–287. doi:10.1016/j.combustflame.2009.06.011.
  • Joshi, A.V., and Wang, H. 2006. Master equation modeling of wide range temperature and pressure dependence of CO + OH → products. Int. J. Chem. Kinet., 38, 57–73. doi:10.1002/(ISSN)1097-4601
  • Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., and Miller, J.A. 1988. A Fortran Computer Code Package for the Evaluation of Gas-Phase, Multicomponent Transport Properties. Sandia National Laboratories, Report No. SAND86-8246B.
  • Kee, R.J., Grcar, K., Smooke, M.D., and Miller, J.A. 1985. Premix: a fortran program for modelling steady laminar one-dimensional premixed flames. Sandia National Laboratories, Report No. SAND85-8240.
  • Kee, R.J., Rupley, F.M., and Miller, J.A. 1989. Chemkin-ii: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Report No. SAND89-8009. Sandia National Laboratories, Livermore, CA.
  • Konnov, A.A. 2000. Detailed reaction mechanism for small hydrocarbons combustion. http://Homepages.Vub.Ac.Be/~Akonnov/
  • Law, C.K. 2006. Combustion Physics, Cambridge Univ. Press, New York.
  • Law, C.K., Zhu, D.L., and Yu, G. 1988. Propagation and extinction of stretched premixed flames. Symp. (Int.) Combust., 21, 1419–1426. doi:10.1016/S0082-0784(88)80374-6
  • Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F., and Scire, J.J., JR. 2007. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int. J. Chem. Kinet., 39, 109–136. doi:10.1002/kin.20218
  • Li, S., Tao, T., Wang, J., Yang, B., Law, C.K., and Qi, F. 2017. Using sensitivity entropy in experimental design for uncertainty minimization of combustion kinetic models. Proceedings of the Combustion Institute, Republic of Korea, Vol. 36, pp. 709–716. doi:10.1016/j.proci.2016.07.102
  • Liao, S., Li, H.M., Mi, L., Shi, X.H., Wang, G., Cheng, Q., and Yuan, C. 2010. Development and validation of a reduced chemical kinetic model for methanol oxidation. Energy & Fuels, 25, 60–71. doi:10.1021/ef101335q
  • Lutz, A.E., Kee, R.J., Grcar, J.F., and Rupley, F.M. 1997. OPPDIF: a FORTRAN program for computing opposed-flow diffusion flames. Sandia National Laboratories Report SAND96–8243.
  • Moffat, R.J. 1988. Describing the uncertainties in experimental results. Exp. Therm Fluid Sci., 1, 3–17. doi:10.1016/0894-1777(88)90043-X
  • Mueller, M.A., Kim, T.J., Yetter, R.A., and Dryer, F. 1999. Flow reactor studies and kinetic modeling of the H2/O2 reaction. Int. J. Chem. Kinet., 31, 113–125. doi:10.1002/(ISSN)1097-4601
  • Natarajan, K., and Bhaskaran, K.A. 1981. An experimental and analytical study of methanol ignition behind shock waves. Combust. Flame, 43, 35–49. doi:10.1016/0010-2180(81)90005-5
  • Park, J., Lee, K.-H., and Kim, K.-S. 2002. Diluent effect of air stream on NO emission characteristic in H2/Ar counterflow diffusion flame. Int. J. Energy Res., 26, 455–473. doi:10.1002/er.796
  • Peters, N. 2009. Multiscale combustion and turbulence. Proceedings of the Combustion Institute, Canada, Vol. 32, pp. 1–25. doi:10.1016/j.proci.2008.07.044
  • Pettersson, L., and Sjöström, K. 1991. Decomposed methanol as a fuel—a review. Combust. Sci. Technol., 80, 265–303. doi:10.1080/00102209108951788.
  • Ran, M., Shi, J., Niu, J., Qin, C., and Ran, J. 2017. Investigation and improvement of the kinetic mechanism for methanol pyrolysis. Int. J. Hydrogen Energy, 42, 16345–16354. doi:10.1016/j.ijhydene.2017.05.042
  • Rasmussen, C.L., Wassard, H.K., Dam‐Johansen, K., and Glarborg, P. 2008. Methanol oxidation in a flow reactor: implications for the branching ratio of the CH3OH+OH reaction. Int. J. Chem. Kin., 40, 423–441. doi:10.1002/kin.20323
  • Saeed, K., and Stone, R. 2004. Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model. Combust. Flame, 139, 152–166. doi:10.1016/j.combustflame.2004.08.008
  • Seiser, R., Humer, S., Seshadri, K., and Pucher, E. 2007. Experimental investigation of methanol and ethanol flames in nonuniform flows. Proceedings of the Combustion Institute, Germany, Vol. 31, pp. 1173–1180. doi:10.1016/j.proci.2006.08.101
  • Sileghem, L., Alekseev, V.A., Vancoillie, J., Nilsson, E.J.K., Verhelst, S., and Konnov, A.A. 2014. Laminar burning velocities of primary reference fuels and simple alcohols. Fuel, 115, 32–40. doi:10.1016/j.fuel.2013.07.004
  • Smith, G.P., Tao, Y., and Wang, H. 2016. Foundational Fuel Chemistry Model Version 1.0 (FFCM-1). http://nanoenergy.stanford.edu/ffcm1
  • Tao, Y., Smith, G.P., and Wang, H. 2018. Critical kinetic uncertainties in modeling hydrogen/carbon monoxide, methane, methanol, formaldehyde, and ethylene combustion. Combust. Flame, 195, 18–29. doi:10.1016/j.combustflame.2018.02.006.
  • Vancoillie, J., Christensen, M., Nilsson, E., Verhelst, S., and Konnov, A.A. 2012. Temperature dependence of the laminar burning velocity of methanol flames. Energy & Fuels, 26, 1557–1564. doi:10.1021/ef2016683
  • Westbrook, C.K., and Dryer, F.L. 1979. Comprehensive mechanism for methanol oxidation. Combust. Sci. Technol., 20, 125–140. doi:10.1080/00102207908946902
  • Westerweel, J. 1999. Fundamentals of digital particle image velocimetry. Meas. Sci. Technol., 8, 1379–1392. doi:10.1088/0957-0233/8/12/002
  • Xu, R., Wang, K., Banerjee, S., Shao, J., Parise, T., Zhu, Y., Wang, S., Movaghar, A., Lee, D.J., Zhao, R., Han, X., Gao, Y., Lu, T., Brezinsky, K., Egolfopoulos, F.N., Davidson, D.F., Hanson, R.K., Bowman, C.T., and Wang, H. 2018. A physics-based approach to modeling real-fuel combustion chemistry – II. Reaction kinetic models of jet and rocket fuels. Combust. Flame, 193, 520–537. doi:10.1016/j.combustflame.2018.03.021
  • Yao, C., Yang, X., ROY RAINE, R., Cheng, C., Tian, Z., and Li, Y. 2009. The effects of MTBE/ethanol additives on toxic species concentration in gasoline flame. Energy & Fuels, 23, 3543–3548. doi:10.1021/ef900035q
  • Zhang, H., and Egolfopoulos, F.N. 2000. Extinction of near-limit premixed flames in microgravity. Proceedings of the Combustion Institute, Scotland, Vol. 28, pp. 1875–1882. doi:10.1016/S0082-0784(00)80591-3
  • Zhang, Y., Qiu, X., Li, B., Zhang, H., and Li, S. 2013. Extinction studies of near-limit lean premixed syngas/air flames. Int J Hydrogen Energy, 38, 16453–16462. doi:10.1016/j.ijhydene.2013.09.153
  • Zhang, Y., Shen, W., Fan, M., Zhang, H., and Li, S. 2014. Laminar flame speed studies of lean premixed H2/CO/air flames. Combust. Flame, 161, 2492–2495. doi:10.1016/j.combustflame.2014.03.016
  • Zhang, Y., Shen, W., Zhang, H., Wu, Y., and Lu, J. 2015. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames. Fuel, 157, 115–121. doi:10.1016/j.fuel.2015.05.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.