699
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Some Recently Proposed Modifications to the Eddy Dissipation Concept (EDC)

ORCID Icon
Pages 1108-1136 | Received 21 Dec 2018, Accepted 22 Apr 2019, Published online: 05 May 2019

References

  • Aminian, J., Galletti, C., Shahhosseini, S., and Tognotti, L. 2012. Numerical investigation of a MILD combustion burner: analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow Turbul. Combust., 88, 597–623. doi:10.1007/s10494-012-9386-z.
  • Ansys Inc. 2016a. Ansys Fluent Theory Guide Release 17.0., Ansys Inc. Canonsburg, PA, USA.
  • Ansys Inc. 2016b. Ansys Fluent User Guide, Release 17.0., Ansys Inc. Canonsburg, PA, USA.
  • Bao, H. 2017. Development and validation of a new eddy dissipation concept (EDC) model for MILD combustion. Thesis for MSc. Delft University of Technology, Delft, Netherlands. Available from https://repository.tudelft.nl/. (last visited 18 Feb 2019).
  • Bösenhofer, M., Wartha, E.M., Jordan, C., and Harasek, M. 2018. The Eddy Dissipation Concept – analysis of different fine structure treatments for classical combustion. Energies, 11, 1902. doi:10.3390/en11071902.
  • Brostrøm, M.F. 1987. Time dependent numerical calculations of pool fire development in enclosed space. Thesis for dr.ing. Department of Thermodynamics, Norwegian Institute of Technology, Trondheim.
  • De, A., Oldenhof, E., Sathiah, P., and Roekaerts, D. 2011. Numerical simulation of Delft-jet-in-hot-coflow (DJHC) flames using the Eddy dissipation concept model for turbulence-chemistry interaction. Flow Turbul. Combust., 87, 537–567. doi:10.1007/s10494-011-9337-0.
  • Ertesvåg, I.S. 1991. Development of a turbulence model for low Reynolds numbers with an equation for the Reynolds stresses and an equation for a characteristic frequency (in Norwegian). Dr.ing.-thesis No. 49. Department of Thermodynamics, Norwegian Institute of Technology, Trondheim.
  • Ertesvåg, I.S. 2000. Turbulent Strøyming Og Forbrenning (In Norwegian.), Tapir Academic Publisher, Trondheim, Norway. English version, “Turbulent flow and combustion”, 2008, unpublished.
  • Ertesvåg, I.S., and Magnussen, B.F. 2000. The Eddy dissipation turbulence energy cascade model. Combust. Sci. Tech., 159, 213–236. doi:10.1080/00102200008935784.
  • Evans, M.J., Medwell, P.R., and Tian, Z.F. 2015. Modeling lifted jet flames in a heated coflow using an optimized Eddy dissipation concept model. Combust. Sci. Technol., 187, 1093–1109. doi:10.1080/00102202.2014.1002836.
  • Evans, M.J., Petre, C., Medwell, P.R, and Parente, A. 2019 Generalisation of the eddy-dissipation concept for jet flames with low turbulence and low damköhler number. Proceedings Of The Combustion Institute, 37, 4497-4505. doi: 10.1016/j.proci.2018.06.017.
  • Farokhi, M., and Birouk, M. 2016a. Application of Eddy dissipation concept for modeling biomass combustion, Part 1: assessment of the model coefficients. Energy Fuels, 30, 10789–10799. doi:10.1021/acs.energyfuels.6b01947.
  • Farokhi, M., and Birouk, M. 2016b. Application of Eddy dissipation concept for modeling biomass combustion, Part 2: gas-phase combustion modeling of a small-scale fixed bed furnace. Energy Fuels, 30, 10800–10808. doi:10.1021/acs.energyfuels.6b01948.
  • Farokhi, M., and Birouk, M. 2018a. A new EDC approach for modeling turbulence/chemistry interaction of the gas-phase of biomass combustion. Fuel, 220, 420–436. doi:10.1016/j.fuel.2018.01.125.
  • Farokhi, M., and Birouk, M. 2018b. Modeling of the gas-phase combustion of a grate-firing biomass furnace using an extended approach of Eddy dissipation concept. Fuel, 227, 412–423. doi:10.1016/j.fuel.2018.04.102.
  • Graça, M., Duarte, A., Coelho, P.J., and Costa, M. 2013. Numerical simulation of a reversed flow small-scale combustor. Fuel Process. Tech., 107, 126–137. doi:10.1016/j.fuproc.2012.06.028.
  • Gran, I.R. 1994. Mathematical modeling and numerical simulation of chemical kinetics in turbulent combustion. Dr.ing.-thesis No. 49. Department of Applied Mechanics, Thermodynamics and Fluid Dynamics, Norwegian Institute of Technology, Trondheim.
  • Gran, I.R., and Magnussen, B.F. 1996. A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol., 119, 191–217. doi:10.1080/00102209608951999.
  • Jessee, J.P., Gansman, R.F., and Fiveland, W.A. 1993. Calculation of chemically reacting flows using finite kinetics. In ASME HTD-Vol.250, Heat Transfer in Fire and Combustion Systems, American Society of Mechanical Engineers, New York, pp. 43–53.
  • Launder, B.E., and Spalding, D.B. 1974. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng., 3, 269–289. doi:10.1016/0045-7825(74)90029-2.
  • Lewandowski, M.T., and Ertesvåg, I.S. 2018. Analysis of the Eddy dissipation concept formulation for MILD combustion modelling. Fuel, 224, 687–700. doi:10.1016/j.fuel.2018.03.110.
  • Li, Z., Cuoci, A., Sadiki, A., and Parente, A. 2017. Comprehensive numerical study of the Adelaide jet in hot-coflow burner by means of RANS and detailed chemistry. Energy, 139, 555–570. doi:10.1016/j.energy.2017.07.132.
  • Lilleberg, B., Christ, D., Ertesvåg, I.S., Rian, K.E., and Kneer, R. 2013. Numerical simulation with an extinction database for use with the Eddy dissipation concept for turbulent combustion. Flow Turbul. Combust., 91, 319–346. doi:10.1007/s10494-013-9463-y.
  • Magnussen, B.F. 1980. Modeling of reaction processes in turbulent flames with special emphasis on soot formation and combustion. Proceedings of an international symposium on particulate carbon: formation during combustion. October 15–16, 1980, General motors research laboratories, Warren, Michigan. In Siegla, D.C., and Smith, G.W., Eds. Particulate Carbon: Formation during Combustion, Plenum Publ., New York, pp. 1981.
  • Magnussen, B.F. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. In 19th. AIAA Aerospace Science Meeting, St.Louis, Missouri, January 12–15 1981. doi:10.2514/6.1981-42. ( Available at http://folk.ntnu.no/ivarse/edc).
  • Magnussen, B.F. 1985. Heat transfer in gas turbine combustors. In AGARD Conference Proceedings No. 390 Heat transfer and cooling in gas turbines. Papers presented at the Propulsion and Energetics Panel 65th Symposium, Bergen, Norway, May 6–11 1985.
  • Magnussen, B.F. 1989. Modeling of NOx and soot formation by the eddy dissipation concept. In Int. Flame Research Foundation, 1st Topic Oriented Technical Meeting, Amsterdam, Holland, October 17–19. ( Available from http://folk.ntnu.no/ivarse/edc).
  • Magnussen, B.F. 2002a. A discussion of some elements of the Eddy Dissipation Concept (EDC). In 24th Annual task leaders meeting IEA implementing agreement on energy conservation and emissions reduction in combustion, Trondheim, Norway, June 23–26 2002.
  • Magnussen, B.F. 2002b. The Eddy Dissipation Concept (EDC) for turbulent combustion modeling. Topical meeting of the scandinavian-nordic section of the combustion institute. Trondheim. Norway, 10–11, 2002.
  • Magnussen, B.F. 2005. The Eddy dissipation concept - A bridge between science and technology. In ECCOMAS Thematic Conference on Computational Combustion, Lisboa, Portugal, June 21–24 2005. ( Available from http://folk.ntnu.no/ivarse/edc).
  • Magnussen, B.F., and Hjertager, B.H. 1976. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst., 16, 719–729. doi:10.1016/S0082-0784(77)80366-4.
  • Magnussen, B.F., Hjertager, B.H., Olsen, J.G., and Bhaduri, D. 1978. Effects of turbulent structure and local concentrations on soot formation and combustion in C2H2 diffusion flames. Proc. Combust. Inst., 17, 1383–1393. doi:10.1016/S0082-0784(79)80130-7.
  • Mardani, A. 2017. Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2. Fuel, 191, 114–129. doi:10.1016/j.fuel.2016.11.056.
  • Myhrvold, T. 2003. Combustion modeling in turbulent boundary-layer flows. Dr.Ing. thesis. 38. Norwegian University of Science and Technology, Trondheim. ( Available at http://hdl.handle.net/11250/2577865).
  • Parente, A., Malik, M.R., Contino, F., Cuoci, A., and Dally, B.B. 2016. Extension of the Eddy dissipation concept for turbulence/chemistry interactions to MILD combustion. Fuel, 163, 98–111. doi:10.1016/j.fuel.2015.09.020.
  • Perot, J.B., and de Bruyn Kops, S.M. 2006. Modeling turbulent dissipation at low and moderate Reynolds numbers. J. Turbul., 7, 1–14. doi:10.1080/14685240600907310.
  • Rehm, M., Seifert, P., and Meyer, B. 2009. Theoretical and numerical investigations on the EDC-model for turbulence-chemistry interaction at gasifiation conditions. Comp. Chem. Eng., 33, 402–407. doi:10.1016/j.compchemeng.2008.11.006.
  • Saffman, P.G., and Wilcox, D.C. 1974. Turbulence-model predictions for turbulent boundary layers. Aiaa J., 12, 541–546. doi:10.2514/3.49282.
  • Shiehnejadhesar, A., Mehrabian, R., Scharler, R., and Goldin, G.M. 2014. Development of a gas phase combustion model suitable for low and high turbulence conditions. Fuel, 126, 177–187. doi:10.1016/j.fuel.2014.02.040.
  • Shiehnejadhesar, A., Scharler, R., Mehrabian, R., and Obernberger, I. 2015. Development and validation of CFD models for gas phase reactions in biomass grate furnaces considering gas streak formation above the packed bed. Fuel Process. Technol., 139, 142–158. doi:10.1016/j.fuproc.2015.07.029.
  • Wang, F., Li, P., Mi, J., Wang, J., and Xu, M. 2015. Chemical kinetic effect of hydrogen addition on ethylene jet flames in a hot and diluted coflow. Int. J. Hydrogen Energy, 40, 16634–16648. doi:10.1016/j.ijhydene.2015.09.047.
  • Wilcox, D.C. 1988. Reassessment of the scale-determining equation for advanced turbulence models. Aiaa J., 26, 1299–1310. doi:10.2514/3.10041.
  • Xu, Y., Dai, Z., Li, C., Li, X., Zhou, Z., Yu, G., and Wang, F. 2014. Numerical simulation of natural gas non-catalytic partial oxidation reformer. Int. J. Hydrogen Energy, 39, 9149–9157. doi:10.1016/j.ijhydene.2014.03.204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.