4,529
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Pollutant Emissions from Improved Cookstoves of the Type Used in Sub-Saharan Africa

, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , & show all
Pages 1582-1602 | Received 13 Oct 2018, Accepted 01 May 2019, Published online: 15 May 2019

References

  • Arora, P., and Jain, S. 2015. Estimation of organic and elemental carbon emitted from wood burning in traditional and improvedcd cookstoves using controlled cooking test. Environ. Sci. Technol., 49, 3958–3965. doi:10.1021/es504012v
  • Arora, P., Jain, S., and Sachdeva, K. 2013. Physical characterization of particulate matter emitted from wood combustion in improved and traditional cookstoves. Energy Sustain. Dev., 17, 497–503. doi:10.1016/j.esd.2013.06.003
  • Atiku, F.A., Mitchell, E.J.S., Lea-Langton, A.R., Jones, J.M., Williams, A., and Bartle, K.D. 2016. The impact of fuel properties on the composition of soot produced by the combustion of residential solid fuels in a domestic stove. Fuel Proc. Technol., 151, 117–125. doi:10.1016/j.fuproc.2016.05.032
  • Bailis, R., Drigo, R., Ghilardi, A., and Masera, O. 2015. The carbon footprint of traditional woodfuels. Nature Clim. Change, 5, 266–272. doi:10.1038/nclimate2491
  • Bertschi, I.T., Yokelson, R.J., Ward, D.E., Christian, T.J., and Hao, W.M. 2003. Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy. J. Geophys. Res., 108(D13), 8469. doi:10.1029/2002JD002158
  • Bhattacharya, S.C., Albina, D.O., and Abdul Salam, P. 2002a. Emission factors of wood and charcoal-fired cookstoves. Biomass Bioenergy, 23, 453–469. doi:10.1016/S0961-9534(02)00072-7
  • Bhattacharya, S.C., Albina, D.O., and Myint Khaing, A. 2002b. Effects of selected parameters on performance and emission of biomass-fired cookstoves. Biomass Bioenergy, 23, 387–395. doi:10.1016/S0961-9534(02)00062-4
  • Carbon Zero. 2018. www.co2balance.com
  • Caubel, J.J., Rapp, V.H., Chen, S.S., and Gadgil, A.J. 2018. Optimization of secondary air injection in a wood-burning cookstove: an experimental study. Environ. Sci. Technol., 52, 4449–4456. doi:10.1021/acs.est.7b05277
  • Chafe, Z.A., Brauer, M., Klimont, Z., Van Dingenen, R., Mehta, S., Rao, S., Riahi, K., Dentener, F., and Smith, K.R. 2014. Household cooking with solid fuels contributes to ambient PM(2.5). Air pollution and the burden of disease. Environ. Health Persp., 122, 1314–1320. doi:10.1289/ehp.1206340
  • Chartier, R., Phillips, M., Mosquin, P., Elledge, M., Bronstein, K., Nandasena, S., Thornburg, V., Thornburg, J., and Rodes, C. 2017. A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka. Indoor Air, 27, 147–159. doi:10.1111/ina.12281
  • Chen, L.W.A., Verburg, P., Shackelford, A., Zhu, D., Susfalk, R., Chow, J.C., and Watson, J.G. 2010. Moisture effects on carbon and nitrogen emission from burning of wildland biomass. Atmos. Chem. Phys., 10, 6617–6625. doi:10.5194/acp-10-6617-2010
  • Chung, S.-H., and Violi, A. 2011. Peri-condensed atomatics with aliphatic chains as key intermediates for the nucleaction of aromatic hydrocarbons. Proc. Combus.T Symp., 33, 693–700. doi:10.1016/j.proci.2010.06.038
  • Coffey, E.R., Muvandimwe, D., Hagar, Y., Wiedinmyer, C., Kanyomse, E., Piedrahita, R., Dickinson, K.L., Oduro, A., and Hannigan, M.P. 2017. New emission factors and efficiencies from in-field measurements of traditional and improved cookstoves and their potential implications. Environ. Sci. Technol., 51, 12508–12517. doi:10.1021/acs.est.7b02436
  • Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C.A., Shin, H., Straif, K., Shaddick, G., Thomas, M., Van Dingenen, R., Van Donkelaar, A., Vos, T., Murray, C.J.L., and Forouzanfar, M.H. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. The Lancet, 389, 1907–1918. doi:10.1016/S0140-6736(17)30505-6
  • Dilger, M., Orasche, J., Zimmermann, R., Paur, H.-R., Diabaté, S., and Weiss, C. 2016. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Arch. Of Toxicol., 90, 3029–3044. doi:10.1007/s00204-016-1659-1
  • Eilenberg, S.R., Bilsback, K.R., Johnson, M., Kodros, J.K., Lipsky, E.M., Naluwagga, A., Fedak, K.M., et al. 2018. Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India. Atmos. Environ., 190, 116–125. doi:10.1016/j.atmosenv.2018.06.041
  • Friedl, A., Padouvas, E., Rotter, H., and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta, 544, 191–198. doi:10.1016/j.aca.2005.01.041
  • Global Alliance for Clean Cookstoves (now Clean Cooking Alliance). www.cleancookingalliance.org
  • Gyapa Enterprises. 2018. www.gyapa.com
  • Hawley, B., and Volckens, J. 2013. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells. Indoor Air, 23, 4–13. doi:10.1111/j.1600-0668.2012.00790.x
  • Healey, Lingard, J.J.N., Tomlin, A., Hughes, A., White, K.L.M., Wild, C.P., and Routledge, M.N. 2005. Genotoxicity of size-fractionated samples of urban particulate matter. Environ. Mol. Mutagen., 45, 380–387. doi:10.1002/em.20105
  • Huangfu, Y., Li, H., Chen, X., Xue, C., Chen, C., and Liu, G. 2014. Effects of moisture content in fuel on thermal performance and emission of biomass semi-gasified cookstove. Energy Sustain. Dev., 21, 60–65. doi:10.1016/j.esd.2014.05.007
  • IEA. 2017. Energy Access Outlook 2017. World Energy Outlook Special Report, International Energy Agency, Paris, France, November.
  • ISO, 2018. Clean cookstoves and clean cooking solutions — harmonized laboratory test protocols. Part 1: standard test sequence for emissions and performance, safety and durability. ISO 19867‑ 1:2018.
  • Janhäll, S., Andreae, M.O., and Pöschl, U. 2010. Biomass burning aerosol emissions from vegetation fires: particle number and mass emission factors and size distributions. Atmos. Chem. Phys., 10, 1427–1439. doi:10.5194/acp-10-1427-2010
  • Jetter, J., Zhao, Y., Smith, K.R., Khan, B., Yelverton, T., Decarlo, P., and Hays, M.D. 2012. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol., 46, 10827–10834. doi:10.1021/es301693f
  • Johansson, L.S., Tullin, C., Leckner, B., and Sj‘Ovall, P. 2003. Particle emissions from biomass combustion in small combustors. Biomass Bioenergy, 25, 435–446. doi:10.1016/S0961-9534(03)00036-9
  • Just, B., Rogak, S., and Kandlikar, M. 2013. Characterization of ultrafine particulate matter from traditional and improved biomass cookstoves. Environ. Sci. Technol., 47, 3506–3512. doi:10.1021/es304351p
  • Lacey, F.G., Henze, D.K., Lee, C.J., Van Donkelaar, A., and Martin, R.V. 2017. Transient climate and ambient health impacts due to national solid fuel cookstove emissions. Proc. Nat. Acad. Sc. USA, 114, 1269–1274. doi:10.1073/pnas.1612430114
  • Lask, K., Booker, K., Han, T., Granderson, J., Yang, N., Ceballos, C., and Gadgil, A. 2015. Performance comparison of charcoal cookstoves for Haiti: laboratory testing with water boiling and controlled cooking tests. Energy Sustain. Devel., 26, 79–86. doi:10.1016/j.esd.2015.02.002
  • Lombardi, F., Riva, F., Bonamini, G., Barbieri, J.A., and Colombo, E. 2017. Laboratory protocols for testing of Improved Cooking Stoves (ICSs): A review of state-of-the-art and further developments. Biomass Bioenergy, 98, 321–335. doi:10.1016/j.biombioe.2017.02.005
  • Mamuye, F., Lemma, B., and Woldeamanuel, T. 2018. Emissions and fuel use performance of two improved stoves and determinants of their adoption in Dodola, southeastern Ethiopia. Sustain. Environ. Res., 28, 32–38. doi:10.1016/j.serj.2017.09.003
  • Marabini, L., Ozgen, S., Turacchi, S., Aminti, S., Arnaboldi, F., Lonati, G., Fermo, P., Corbella, L., Valli, G., Bernardoni, V., Dell’acqua, M., Vecchi, R., Becagli, S., Caruso, D., Corrado, G.L., and Marinovich, M. 2017. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells. Mutat. Res.Genet. Toxicol. Environ. Mutag., 820, 39–46. doi:10.1016/j.mrgentox.2017.06.001
  • Mitchell, E.J.S. 2017. Emissions from residential solid fuel combustion and implications for air quality and climate change. PhD Dissertation. University of Leeds, Leeds, UK.
  • Mitchell, E.J.S., Lea-Langton, A.R., Jones, J.M., Williams, A., Layden, P., and Johnson, R. 2016. The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Proc.Technol., 142, 115–123. doi:10.1016/j.fuproc.2015.09.031
  • Mortimer, K., Ndamala, C.B., Naunje, A.W., Malava, J., Katundu, C., et al. 2017. A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial. The Lancet, 389, 167–175. doi:10.1016/S0140-6736(16)32507-7
  • Mu, Q., Hondow, N.S., Krzemiński, Ł., Brown, A.P., Jeuken, L.J., and Routledge, M.N. 2012. Mechanism of cellular uptake of genotoxic silica nanoparticles. Part Fibre Toxicol, 9, 29. doi:10.1186/1743-8977-9-29
  • Oanh, N.T.K., Bætz Reutergårdh, L., and Dung, N.T. 1999. Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ. Sci. Technol., 33, 2703–2709. doi:10.1021/es980853f
  • Patel, S., Leavey, A., He, S., Fang, J., O’Malley, K., and Biswas, P. 2016. Characterization of gaseous and particulate pollutants from gasification-based improved cookstoves. Energy Sustain. Devel., 32, 130–139. doi:10.1016/j.esd.2016.02.005
  • Phyllis2 database. 2018. https://www.ecn.nl/phyllis2
  • Price-Allison, A., Lea-Langton, A.R., Mitchell, E.J.S., Gudka, B., Jones, J.M., Mason, P.E., and Williams, A. 2019. Emissions performance of high moisture wood fuels burned in a residential stove. Fuel, 293, 1038–1045.
  • Rapp, V.H., Caubel, J.J., Wilson, D.L., and Cadgil, A.J. 2016. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves. Environ. Sci. Technol., 50, 8368–8374.
  • Shah, R., and Date, A.W. 2011. Steady-State thermochemical model of a wood-burning cook-stove. Combust. Sci. And Technol., 183, 321–346.
  • Shen, G., Gaddam, C.K., Ebersviller, S.M., Vander Wal, R.L., Williams, C., Faircloth, J.W., Jetter, J.J., and Hays, M.D. 2017. A laboratory comparison of emission factors, number size distributions, and morphology of ultrafine particles from 11 different household cookstove-fuel systems. Environ. Sci. Technol., 51, 6522–6532.
  • Shen, G., Shu Tao, S., Yuanchen Chen, T., Zhang, Y., Wei, S., Xue, M., Wang, B., et al. 2013b. Emission characteristics for polycyclic aromatic hydrocarbons from solid fuels burned in domestic stoves in rural China. Environ. Sci. Technol., 47, 14485−14494.
  • Shen, G., Xue, M., Wei, S., Chen, Y., Zhao, Q., Li, B., Wu, H., and Tao, S. 2013a. Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J. Environ. Sci., 25, 1808–1816.
  • Singh, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L. 1988. A simple technique for quantification of low-levels of DNA damage in individual cells. Exp. Cell Res., 175, 184–191.
  • Still, D., Bentson, S., and Li, H. 2015. Results of laboratory testing of 15 cookstove designs in accordance with the ISO/IWA tiers of performance. EcoHealth, 12, 12–24.
  • Symonds, J.P.R. 2010. Calibration of fast response differential mobility spectrometers. Conference on Metrology of Airborne Nanoparticles, Standardisation and Applications (MANSA), National Physical Laboratory, London, UK, June, 2010.
  • Ting, Y., Mitchell, E.J.S., Allan, J.D., Liu, D., Spracklen, D.V., Williams, A., Jones, J.M., Lea-Langton, A.R., McFiggans, G., and Coe, H. 2018. Mixing state of carbonaceous aerosols of primary emissions from “improved” African cookstoves. Environ. Sci. Technol., 52, 10134–10143.
  • Tryner, J., Tillotson, J.W., Baumgardner, M.E., Mohr, J.T., Defoort, M.W., and Marchese, J. 2016. The effects of air flow rates, secondary air inlet geometry,fuel type, and operating mode on the performance of gasifier cookstoves. Environ. Sci. Technol., 50, 9754–9763.
  • Wathore, R., Mortimer, K., and Grieshop, A.P. 2017. In-use emissions and estimated impacts of traditional, natural and forced-draft cookstoves in rural Malawi. Environ.Sci.Technol., 51, 1929–1938.
  • Williams, A., Jones, J.M., Ma, L., and Pourkashanian, M. 2012. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci., 38, 113–137.
  • Wittmaack, K. 2007. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ. Health Persp., 115, 187–194.
  • WorldStove Corporation. 2018. http://worldstove.com/stoves