250
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Oxygen Played in Nitrous Oxide Heterogeneous Reduction and the Behavior of Oxygen on Char Surface: Quantum Chemical and Kinetics Calculations

, , , , &
Pages 1682-1706 | Received 05 Dec 2018, Accepted 15 May 2019, Published online: 03 Jun 2019

References

  • Andrea, M., and Oyarzu´N, L.R. 2015. Radovic, Takashi Kyotani. An update on the mechanism of the graphene–NO reaction. Carbon, 86, 58–68. doi:10.1016/j.carbon.2015.01.020
  • Andrea, M., Oyarzún, A.J.A., Salgado-Casanova, X.A., and García-Carmona, L.R.R. 2016. Kinetics of oxygen transfer reactions on the graphene surface: part I. NO vs. O2. Carbon, 99, 472–484. doi:10.1016/j.carbon.2015.12.005
  • Calderón, L.A., Garza, J., and Espinal, J.F. 2015. Theoretical study of sodium effect on the gasification of carbonaceous materials with carbon dioxide. J. Phys. Chem. A, 119, 12756–12766. doi:10.1021/acs.jpca.5b06446
  • Carabineiro, S.A., and Lobo, L.S. 2016. Understanding the reactions of CO2, NO, and N2O with activated carbon catalyzed by binary mixtures. Energy Fuels, 30(9). 6881–6891. doi:10.1021/acs.energyfuels.6b01051
  • Chen, N., and Yang, R.T. 1998. Ab initio molecular orbital calculation on graphite: selection of molecular system and model chemistry. Carbon, 36, 1061–1070. doi:10.1016/S0008-6223(98)00078-5
  • Chong, P.C., Pyo, Y.D., Jin, Y.J., Gang, C.K., and Shin, Y.J. 2017. NOX reduction and N2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts. Appl. Therm. Eng., 110, 18–24. doi:10.1016/j.applthermaleng.2016.08.118
  • Cui, Z.G., Jiang, X.M., Han, X.X., and Ma, S.X. 2017. Intrinsic conversion mechanism on nitrous oxide and nitrogen oxide during circulating fluidized bed combustion of Oil Shale. Combust. Sci. Technol., 189(7), 1162–1185. doi:10.1080/00102202.2016.1264940
  • Dai, C., Lei, Z., Wang, Y., Zhang, R., and Chen, B. 2013. Reduction of N2O by CO over Fe- and Cu-BEA zeolites: an experimental and computational study of the mechanism. Microporous Mesoporous Mater., 167(5), 254–266. doi:10.1016/j.micromeso.2012.09.001
  • Enoki, T., Fujii, S., and Takai, K. 2012. Zigzag and armchair edges in graphene. Carbon, 50, 3141–3145. doi:10.1016/j.carbon.2011.10.004
  • Espinal, J.F., Truong, T.N., and Mondragón, F. 2007. Mechanisms of NH3 formation during the reaction of H2 with nitrogen containing carbonaceous materials. Carbon, 45, 2273–2279. doi:10.1016/j.carbon.2007.06.011
  • Frankcombe, T.J., and Smith, S.C. 2004. On the microscopic mechanism of carbon gasification: a theoretical study. Carbon, 42, 2921–2928. doi:10.1016/j.carbon.2004.07.002
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. 2013. Gaussian 09, Revision E. 01, Gaussian, Inc, Wallingford CT.
  • Gao, Z., Yang, W., Ding, X., Ding, Y., and Yan, W. 2017a. Theoretical research on heterogeneous reduction of N2O by char. Appl. Therm. Eng., 126, 28–36. doi:10.1016/j.applthermaleng.2017.07.166
  • Gao, Z.Y., Yang, W.J., and Yan, W.P. 2017b. Reaction mechanism of NO reduction with HCN catalyzed by char. J. Fuel Chem. Technol., 45(9), 1043–1048.
  • Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.H., Crommie, M.F., Cohen, M.L., Louie, S.G., and Zettl, A. 2009. Graphene at the edge: stability and dynamics. Science, 323, 1705–1708. doi:10.1126/science.1166999
  • Gupta, H., and Fan, L.-S. 2003. Reduction of nitric oxide from combustion flue gas by bituminous coal char in the presence of oxygen. Ind. Eng. Chem. Res., 42, 2536–2543. doi:10.1021/ie020693n
  • He, P., Zhang, X., Peng, X., Jiang, X., Wu, J., and Chen, N. 2015. Interaction of elemental mercury with defective carbonaceous cluster. J. Hazard. Mater., 300, 289–297. doi:10.1016/j.jhazmat.2015.07.017
  • Jalbout, A.F., and Fernandez, S. 2002. Part II Gaussian, complete basis set and density functional theory stability evaluation of the singlet states of Cn (n=1-6): energy differences, HOMO-LUMO band gaps, and aromaticity. J. Mol. Struc. Theochem., 584(1–3), 169–182. doi:10.1016/S0166-1280(02)00003-9
  • Jiao, A., Zhang, H., Liu, J., Shen, J., and Jiang, X. 2017. The role of CO played in the nitric oxide heterogeneous reduction: a quantum chemistry study. Energy, 141, 1538–1546. doi:10.1016/j.energy.2017.11.115
  • Kyotani, T., and Tomita, A. 1999a. Analysis of the reaction of carbon with NO/N2O using Ab initio molecular orbital theory. J. Phys. Chem. B, 103(17). 275–278. doi:10.1021/jp9845928
  • Kyotani, T., and Tomita, A. 1999b. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory. J. Phys. Chem. B, 103, 3434–3441. doi:10.1021/jp9845928
  • Li, S., Xu, M., Jia, L., Tan, L., and Lu, Q. 2016. Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed. Appl. Energy, 173, 197–209. doi:10.1016/j.apenergy.2016.02.054
  • Liu, H., Feng, B., Lu, J., and Zheng, C. 2005. Coal property effects on N2O and NOx formation from circulating fluidized bed combustion of coal. Chem. Eng. Commun., 192(11), 1482–1489. doi:10.1080/009864490896043
  • Liu, H., and Gibbs, B. 2001. The influence of calcined limestone on NOx and N2O emissions from char combustion in fluidized bed combustors. Fuel, 80(9), 1211–1215. doi:10.1016/S0016-2361(00)00212-X
  • Liu, Z., He, F., Ma, L., and Peng, S. 2016. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts. Catal. Surv. Asia, 20(3), 121–132. doi:10.1007/s10563-016-9213-y
  • Lu, T., and Chen, F.W. 2013. Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2). J. Mol. Model, 19, 5387–5395. doi:10.1007/s00894-013-2034-2
  • Lucas, A., Calderón, E.C., and Espinal, J.F. 2016. Mechanisms for homogeneous and heterogeneous formation of methane during the carbon-hydrogen reaction over zigzag edge sites. Carbon, 102, 390–402. doi:10.1016/j.carbon.2016.02.052
  • Molina, A., Sarofim, A.F., Ren, W., Lu, J., Yue, G., Beer, J.M., and Brian, S.H. 2002. Effect of boundary layer reactions on the conversion of CHAR-N to NO, N2O, and HCN at fluidized-bed combustion conditions. Combust. Sci. Technol., 174(11–12), 43–71. doi:10.1080/713712945
  • Montoya, A., Truong, T.T.T., Mondragon, F., and Truong, T.N. 2001. CO desorption from oxygen species on carbonaceous surface: 1. Effects of the local structure of the active site and the surface coverage. J. Phys. Chem. A, 105, 6757–6764. doi:10.1021/jp010572l
  • Noda, K., Chambrion, P., Takashi Kyotani, A., and Tomita, A. 1999. A study of the N2 formation mechanism in Carbon−N2O reaction by using isotope gases. Energy Fuels, 13(4), 941–946. doi:10.1021/ef9900132
  • Pevida, C., Arenillas, A., Rubiera, F., and Pis, J.J. 2005. Heterogeneous reduction of nitric oxide on synthetic coal chars. Fuel, 84, 2275–2279. doi:10.1016/j.fuel.2005.06.003
  • Sendt, K., and Haynes, B.S. 2005. Density functional study on the chemisorption of O2 on the zigzag surface of graphite. Combust. Flame, 143, 629–643. doi:10.1016/j.combustflame.2005.08.026
  • Sendt, K., and Haynes, B.S. 2007. Density functional study of the chemisorption of O2 Across two rings of the armchair surface of graphite. J. Phys. Chem. C, 111, 5465–5473. doi:10.1021/jp067363r
  • Sendt, K., and Brian, S. 2011. Haynes. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene. Proc. Combust. Inst., 33, 1851–1858. doi:10.1016/j.proci.2010.06.021
  • Sheng, C. 2007. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel, 86, 2316–2324. doi:10.1016/j.fuel.2007.01.029
  • Shim, H.S., Hurt, R.H., and Yang, N.Y.C. 2000. A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons. Carbon, 38, 29–45. doi:10.1016/S0008-6223(99)00096-2
  • Wang, C., Du, Y., and Che, D. 2015. Study on N2O reduction with synthetic coal char and high concentration CO during oxy-fuel combustion. Proc. Combust. Inst., 35(2), 2323–2330. doi:10.1016/j.proci.2014.07.018
  • Wigner, E. 1932. Concerning the excess of potential barriers in chemical reactions. Z Phys. Chem. B-Chem. E, 19. 203–216.
  • Wu, L. 2017. Study on the Conversion Mechanism of Volatile Nitrogen during Fuel Combustion in Circulating Fluidized Bed Boilers, North China Electric Power University, Beijing.
  • Xie, J., Yang, X., Zhang, L., Ding, T., Yao, J., Song, W., Lin, W., and Guo, H. 2006. Behavior of NO, N2O and SO2 emissions during coal combustion in a circulating fluidized bed combustor. J. Fuel Chem. Technol., 34(2), 151–159.
  • Yang, J., Sanchez-Cortezon, E., Pfänder, N., Wild, U., Mestl, G., and Find, J. 2000. Reaction of NO with carbonaceous materials:: III. Influence of the structure of the materials. Carbon, 38(14), 2029–2039.
  • Yu, Y., Gao, Z., Ji, P., Li, F., and Yang, W. 2017. Heterogeneous reduction reaction of N2O by char. CIESC J., 68(1), 369–374.
  • Zhang, H., Jiang, X., Liu, J., and Shen, J. 2014. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups. Energy Convers. Manage., 83, 167–176. doi:10.1016/j.enconman.2014.03.067
  • Zhang, H., Liu, J., Shen, J., and Jiang, X. 2015. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion. Energy, 82, 312–321. doi:10.1016/j.energy.2015.01.040
  • Zhang, H., Liu, J., Wang, X., Luo, L., and Jiang, X. 2017. DFT study on the C(N)-NO reaction with isolated and contiguous active sites. Fuel, 203, 715–724. doi:10.1016/j.fuel.2017.05.023
  • Zhang, Q., Zhang, X., Zhou, J., Zhou, Z., Zhang, Y., Liu, J., and Cen, K. 2013. Characteristics of NO chemisorption on surface of char. J. China Coal Soc., 9. 1651–1655.
  • Zhang, X. 2012. Nitrogen Conversion Mechanism during Char Combustion and Development of Low NOx Technology, Zhejiang University, Zhejiang.
  • Zhang, X., Zhou, Z., Zhou, J., Jiang, S., Liu, J., and Ceng, K. 2001. Analysis of the reaction between O2 and nitrogen-containing char using the density functional theory. Energy Fuels, 25(2), 670–675. doi:10.1021/ef1014742
  • Zhang, X., Zhou, Z., Zhou, J., Jiang, S., Liu, J., and Ceng, K. 2011. A density functional study of heterogeneous formation and decomposition of N2O on the surface of char. J. Fuel Chem. Technol., 39(11), 806–811.
  • Zhang, X., Zhou, Z., Zhou, J., Liu, J., and Cen, K. 2012. Density functional study of NO desorption from oxidation of nitrogen containing char by O2. Combust. Sci. Technol., 184(4), 445–455. doi:10.1080/00102202.2011.648031
  • Zhao, P., Guo, X., and Zheng, C. 2010. Investigating the mechanism of elemental mercury binding on activated carbon and chlorine-embedded activated carbon. P Csee, 30(23), 40–44.
  • Zheng, C., Liu, J., Liu, Z., Xu, M., and Liu, Y. 2005. Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion. Fuel, 84, 1215–1220. doi:10.1016/j.fuel.2004.09.027
  • Zhong, J., Gao, Z., Ding, Y., Yu, Y., and Yang, W. 2017. Heterogeneous reduction reaction of N2O by char based on Zigzag carbonaceous model. J. China Coal Soc., 42(11), 3028–3034.
  • Zhu, Z., Finnerty, J., Lu, G., and Yang, R. 2001. Opposite roles of O2 in NO− and N2O−carbon reactions: an ab initio study. J. Phys. Chem. B, 105, 821–830. doi:10.1021/jp003036m
  • Zhu, Z., and Lu, G. 2003. New insights into NO-Carbon and N2O-Carbon reactions from quantum mechanical calculations. Energy Fuels, 17, 1057–1061. doi:10.1021/ef0202079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.