306
Views
8
CrossRef citations to date
0
Altmetric
Research Article

NOx Minimization in Staged Combustion Using Rich Premixed Flame in Porous Media

, , , , , & show all
Pages 1633-1649 | Received 02 Aug 2018, Accepted 15 Feb 2019, Published online: 01 Jun 2019

References

  • Arai, H., T. Yamada, K. Eguchi, and T. Seiyama. 1986. Catalytic combustion of methane over various perovskite-type oxides. Appl. Catal. 26:265. doi:10.1016/S0166-9834(00)82556-7.
  • Babkin, V. S. 1993. Filtrational combustion of gases: present state of affairs and prospects. Pure Appl. Chem. 65:335. doi:10.1351/pac199365020335.
  • Bachmaier, F., K. H. Eberius, and T. Just. 1973. The formation of nitric oxide and the detection of HCN in premixed hydrocarbon-air flames at 1 atmosphere. Combust. Sci. Technol. 7:77. doi:10.1080/00102207308952345.
  • Banerjee, A., and A. V. Saveliev. 2018. High temperature heat extraction from counterflow porous burner. Int. J. Heat Mass Transf. 127:436. doi:10.1016/j.ijheatmasstransfer.2018.08.027.
  • Banerjee, A., and A. V. Saveliev (April 14–17, 2019). Effect of heat extraction on flame position in counterflow porous burner. 4th Thermal and Fluids Engineering Conference, Las Vegas, NV, USA.
  • Berta, P., S. K. Aggarwal, and I. K. Puri. 2006. An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species. Combust. Flame 145:740. doi:10.1016/j.combustflame.2006.02.003.
  • Cavaliere, A., and M. De Joannon. 2004. Mild combustion. Prog. Energy Combust. Sci. 30:329. doi:10.1016/j.pecs.2004.02.003.
  • Contarin, F., A. V. Saveliev, A. A. Fridman, and L. A. Kennedy. 2003. A reciprocal flow filtration combustor with embedded heat exchangers: numerical study. Int. J. Heat Mass Transf. 46:949. doi:10.1016/S0017-9310(02)00371-X.
  • Drayton, M. K., A. V. Saveliev, L. A. Kennedy, A. A. Fridman, and Y. D. Li. 1998. Syngas production using superadiabatic combustion of ultra-rich methane-air mixtures. Proc. Combust. Inst. 27:1361. doi:10.1016/S0082-0784(98)80541-9.
  • Driscoll, J. F., R. H. Chen, and Y. Yoon. 1992. Nitric oxide levels of turbulent jet diffusion flames; effects of residence time and damkohler number. Combust. Flame 88:37. doi:10.1016/0010-2180(92)90005-A.
  • Fu, X., S. Garner, S. Aggarwal, and K. Brezinsky. 2012. Numerical study of NOx emissions from n-heptane and 1-heptene counterflow flames. Energy Fuels 26:879. doi:10.1021/ef2014315.
  • Gore, J. (July 10–12, 1995) NOx reduction using lean direct injection in naval engines. 31st Joint Propulsion Conference and Exhibit, San Diego, CA, USA. 2906
  • Gore, J. P. 2001. Structure and NOx emission properties of partially premixed flames. In Advances in chemical propulsion, ed. R. G. Science and Technology, CRC Press.
  • Gore, J. P., and N. J. Zhan. 1996. NO x emission and major species concentrations in partially premixed laminar methane/air co-flow jet flames. Combust. Flame 3:414. doi:10.1016/0010-2180(95)00177-8.
  • Hamins, A., H. Thridandam, and K. Seshadri. 1985. Structure and extinction of a counterflow partially premixed, diffusion flame. Chem. Eng. Sci. 40:2027. doi:10.1016/0009-2509(85)87020-2.
  • Han, X., S. K. Aggarwal, and K. Brezinsky. 2013. Effect of unsaturated bond on NOx and PAH formation in n-heptane and 1-heptene triple flames. Energy Fuel 27:537. doi:10.1021/ef301671q.
  • Kennedy, L. A., A. V. Saveliev, J. P. Bingue, and A. A. Fridman. 2002. Filtration combustion of a methane wave in air for oxygen-enriched and oxygen-depleted environments. Proc. Combust. Inst. 29:835. doi:10.1016/S1540-7489(02)80107-9.
  • Kennedy, L. A., J. P. Bingue, A. V. Saveliev, A. A. Fridman, and S. I. Foutko. 2000. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. Proc. Combust. Inst. 28:1431. doi:10.1016/S0082-0784(00)80359-8.
  • Kim, T. K., B. J. Alder, N. M. Laurendeau, and J. P. Gore. 1995. Exhaust and in-situ measurements of nitric oxide for laminar partially premixed C2H6-air flames: effect of premixing level at constant fuel flowrate. Combust. Sci. Technol. 111:361. doi:10.1080/00102209508951931.
  • Kristensen, P. G., P. Glarborg, and K. Dam-Johansen. 1996. Nitrogen chemistry during burnout in fuel-staged combustion. Combust. Flame 107:211. doi:10.1016/S0010-2180(96)00081-8.
  • Lee, C. E., C. B. Oh, and J. H. Kim. 2004. Numerical and experimental investigations of the NOx emission characteristics of CH4-air coflow jet flames. Fuel 83:2323. doi:10.1016/j.fuel.2004.07.001.
  • Lee, J. H., and D. L. Trimm. 1995. Catalytic combustion of methane. Fuel Process. Technol. 42:339. doi:10.1016/0378-3820(94)00091-7.
  • Li, S. C., and F. A. Williams (June 2–5, 1998) Experimental and numerical studies of NOx formation in two-stage methane-air flames. International gas turbine and aeroengine congress and exhibition. Stockholm, Sweden. 98GT073.
  • Li, S. C., N. Ilincic, and F. A. Williams. 1997. Reduction of NOx formation by water sprays in strained two-stage flames. J. Eng. Gas Turb. Power 119:836. doi:10.1115/1.2817062.
  • Libby, P. A., and C. Economos. 1963. A flame zone model for chemical reaction in a laminar boundary layer with application to the injection of hydrogen-oxygen mixtures. Int. J. Heat Mass Transf. 6:113. doi:10.1016/0017-9310(63)90032-2.
  • Lu, T., and C. K. Law. 2008. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 4:761. doi:10.1016/j.combustflame.2008.04.025.
  • Man, C. K., J. R. Gibbins, J. G. Witkamp, and J. Zhang. 2005. Coal characterization for NOx prediction in air-staged combustion of pulverized coals. Fuel 84:2190. doi:10.1016/j.fuel.2005.06.011.
  • Minaev, S. S., S. I. Potytnyakov, and V. S. Babkin. 1994. Combustion wave instability in the filtration combustion of gases. Combust. Explos. Shock Waves 30:306. doi:10.1007/BF00789421.
  • Mohamad, A. A., S. Ramadhyani, and R. Viskanta. 1994. Modelling of combustion and heat transfer in a packed bed with embedded coolant tubes. Int. J. Heat Mass Transf. 37:1181. doi:10.1016/0017-9310(94)90204-6.
  • Palesskii, F. S., R. V. Fursenko, and S. S. Minaev. 2014. Modeling of filtration combustion of gases in a cylindrical porous burner with allowance for radiative heat transfer. Combust. Explos. Shock Waves 50:625. doi:10.1134/S001050821406001X.
  • Peters, N. 1979. Premixed burning in diffusion flames-the flame zone model of libby and economos. Int. J. Heat Mass Transf. 22:691. doi:10.1016/0017-9310(79)90117-0.
  • Peters, N. 1985. Partially premixed diffusion flamelets in non-premixed turbulent combustion. Proc. Combust. Inst. 20:353. doi:10.1016/S0082-0784(85)80521-X.
  • Rkke, N. A., J. E. Hustad, and O. K. Snju. 1994. A study of partially premixed unconfined propane flames. Combust. Flame 97:88. doi:10.1016/0010-2180(94)90118-X.
  • Rumminger, M. D., R. W. Dibble, N. H. Heberle, and D. R. Crosley. 1996. Gas temperature above a porous radiant burner: Comparison of measurements and model predictions. Proc. Combust. Inst. 26:1755. doi:10.1016/S0082-0784(96)80401-2.
  • Seshadri, K., I. Puri, and N. Peters. 1985. Experimental and theoretical investigation of partially premixed diffusion flames at extinction. Combust. Flame 61:237. doi:10.1016/0010-2180(85)90105-1.
  • Smith, G. P., M. D. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, and W. C. Gardiner, et al. n.d. http://www.me.berkeley.edu/gri_mech/
  • Smooke, M. D., A. Ern, M. A. Tanoff, B. A. Valdati, R. K. Mohammed, and D. F. Marran. 1996. Computational and experimental study of no in an axisymmetric laminar diffusion flame. Proc. Combust. Inst. 26:2661. doi:10.1016/S0082-0784(96)80042-7.
  • Tong, T. W., and S. B. Sathe. 1991. Heat transfer characteristics of porous radiant burners. J. Heat Transf. 113:423. doi:10.1115/1.2910578.
  • Trimis, D., and F. Durst. 1996. Combustion in a porous medium-advances and applications. Combust. Sci. Technol. 121:153. doi:10.1080/00102209608935592.
  • Turns, S. R., F. H. Myhr, R. V. Bandaru, and E. R. Maund. 1993. Oxides of nitrogen emissions from turbulent jet flames. II: fuel dilution and partial premixing effects. Combust. Flame 93:255. doi:10.1016/0010-2180(93)90107-E.
  • Vijayan, V., and A. K. Gupta. 2010. Combustion and heat transfer at meso-scale with thermal recuperation. Appl. Energy 87:2628. doi:10.1016/j.apenergy.2010.03.011.
  • Weber, R., J. P. Smart, and W. V. Kamp. 2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc. Combust. Inst. 30:2623. doi:10.1016/j.proci.2004.08.101.
  • Yamaoka, I., and H. Tsuji. 1975. The structure of rich fuel-air flames in the forward stagnation region of a porous cylinder. Proc. Combust. Inst. 15:637. doi:10.1016/S0082-0784(75)80334-1.
  • Yamaoka, I., and H. Tsuji. 1977. Structure analysis of rich fuel-air flames in the forward stagnation region of a porous cylinder. Proc. Combust. Inst. 16:1145. doi:10.1016/S0082-0784(77)80403-7.
  • Yamaoka, I., and H. Tsuji. 1979. An experimental study of flammability limits using counterflow flames. Proc. Combust. Inst. 17:843. doi:10.1016/S0082-0784(79)80081-8.
  • Zhdanok, S., L. A. Kennedy, and G. Koester. 1995. Superadiabatic combustion of methane air mixtures under filtration in a packed bed. Combust. Flame 100:221. doi:10.1016/0010-2180(94)00064-Y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.