404
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Effect of Tube Size on Flame and Pressure Wave Propagation in a Tube Closed at One End: A Numerical Study

, , , , &
Pages 1731-1753 | Received 11 Mar 2019, Accepted 20 May 2019, Published online: 29 May 2019

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017. Deflagration of premixed methane–Air in a largescale detonation tube. Process Saf Environ 109:374–86. doi:10.1016/j.psep.2017.03.035.
  • Akkerman, V., V. Bychkov, A. Petchenko, and L. E. Eriksson. 2006. Accelerating flames in cylindrical tubes with nonslip at the walls. Combust. Flame 145:206–19. doi:10.1016/j.combustflame.2005.10.011.
  • Arntzen, B. J. 1998. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries. Ph.D Thesis, Norwegian University of Science and Technology.
  • Bakke, J. R., and B. H. Hjertager. 1987. The effect of explosion venting in empty volumes. Int. J. Num. Meth. Eng. 24:129–40. doi:10.1002/nme.1620240110.
  • Berets, D. J., E. F. Greene, and G. B. Kistiakowsky. 1950. Gaseous detonations. I. Stationary waves in hydrogen-oxygen mixtures. J. Amer. Chem. Soc. 72:1080–1086. doi:10.1021/ja01159a008.
  • Bidabadi, M., S. Hosseinzadeh, M. Setareh, P. Panahifar, and S. Sadeghi. 2018. Theoretical study of non-adiabatic counter-flow diffusion flames propagating through a volatile biomass fuel taking into account drying and vaporization processes. Fuel Processing Technology 179:184–96. doi:10.1016/j.fuproc.2018.07.005.
  • Bollinger, L. E., M. C. Fong, and R. Edse. 1961. Experimental measurements and theoretical analysis of detonation induction distances. Ars J. 31:588–95. doi:10.2514/8.5567.
  • Bychkov, V., S. M. Golberg, M. A. Liberman, A. I. Kleev, and L. E. Eriksson. 1997. Numerical simulation of curved flames in cylindrical tubes. Comb. Sci. And Tech. 129:217–42. doi:10.1080/00102209708935727.
  • Bychkov, V., A. Petchenko, V. Akkerman, and L. E. Eriksson. 2005. Theory and modeling of accelerating flames in tubes. Phys. Rev. E 72:046307. doi:10.1103/PhysRevE.72.046307.
  • Chen, J., M. Hiu, and Y. Chen. 2015. Optimizing progress variable definition in flamelet-based dimension reduction in combustion. Appl. Math. Mech. 36:1481–98. doi:10.1007/s10483-015-1997-7.
  • Clanet, C., and G. Searby. 1996. On the “Tulip Flame” Phenomenon. Combust. Flame 105:225–38. doi:10.1016/0010-2180(95)00195-6.
  • Creta, F., N. Fogla, and M. Matalon. 2011. Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability. Combust Theor Model 15:267–98. doi:10.1080/13647830.2010.538722.
  • Dhillon, B. S. 2010. Mine safety: A modern approach. In Springer Science & Business Media, 59. Springer Science+Business Media, London.
  • Edwards, D. H., and G. T. Williams. 1957. Effect of Tube Diameter on the Pressures in Gaseous Detonation Waves. Nature 180:1117. doi:10.1038/1801117a0.
  • Hjertager, B. H. 1982. Simulation of transient compressible turbulent reactive flows. Comb. Sci. Technol. 41:159–70. doi:10.1080/00102208208946985.
  • Hjertager, B. H. 1993. Computer modelling of turbulent gas explosions in complex 2D and 3D geometries. J. Hazard. Mater. 34:173–97. doi:10.1016/0304-3894(93)85004-X.
  • Khan, F. I., and S. A. Abbasi. 1999. Major accidents in processindustries and an analysis of causes and consequences. J. Loss Prev. Process Ind. 12:361–78. doi:10.1016/S0950-4230(98)00062-X.
  • Kistiakowsky, G. B., and W. G. Zinman 1955. Second Office of Naval Research Symposium on Detonation, 80.
  • Kjäldman, L., and R. Huhtanen. 1986. Numerical simulation of vapour cloud and dust explosions, In: Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes. Lecture Notes in Engineering 18:148–58.
  • Knystautas, R., J. H. Lee, and C. M. Guirao. 1982. The critical tubediameter for detonation failure in hydrocarbon-air mixtures. Combust. Flame 48:63–83. doi:10.1016/0010-2180(82)90116-X.
  • Launder, B. E., and D. B. Spalding. 1974. The numerical computation of turbulent flows. Computer Methods Appl. Mech. Eng. 3:269–89. doi:10.1016/0045-7825(74)90029-2.
  • Lee, J. H. 1977. Initiation of gaseous detonation. Ann. Rev. Phys. Chem. 28:75–104. doi:10.1146/annurev.pc.28.100177.000451.
  • Lee, J. H., and K. Ramamurthi. 1976. On the concept of the critical size of a detonation kernal. Combust. Flame. 27:331–40. doi:10.1016/0010-2180(76)90038-9.
  • Li, J., W. H. Lai, and K. Chung. 2006. Tube diameter effect on deflagration-to-detonation transition of propane–Oxygen mixtures. Shock Waves 16:109–17. doi:10.1007/s00193-006-0056-8.
  • Magnussen, B. F., and B. H. Hjertager 1976. On the mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. 16th Symp. (Int.) on Combustion and Flame, The Combustion Institute, Pittsburgh, PA, 719–29.
  • Makarov, D., F. Verbecke, V. Molkov, O. Roe, M. Skotenne, A. Kotchourko, A. Lelyakin, J. Yanez, O. Hansen, and P. Middha. 2009. An inter-comparison exercise on CFD model capabilities to predict a hydrogen explosion in a simulated vehicle refuelling environment. Int. J. Hydrogen Energ. 34:2800–14. doi:10.1016/j.ijhydene.2008.12.067.
  • Martin, D. 1986. Some calculations using the two-dimensional turbulent combustion code FLARE. SRD Report R373, UK Atomic Energy Authority, Warrington.
  • Marx, K. D., J. H. S. Lee, and J. C. Cummings. 1985. Modeling of flame acceleration in tubes with obstacles. Proc. Of 11th IMACS World Congress on Simulation and Scientific Computation 5:13–16.
  • Mehrabian, R., S. Zahirovic, R. Scharler, I. Obernberger, S. Kleditzsch, S. Wirtz, V. Scherer, H. Lu, and L. L. Baxter. 2012. A CFD model for thermal conversion of thermally thick biomass particles. Fuel Processing Technology 95:96–108.
  • Oran, E. S., V. N. Gamezo, and Z. I. P. F. JR, R. K. 2015. Large-scale experiments and absolute detonability of methane/air mixtures. Combust. Sci. Technol. 187:324–41.
  • Park, D. J., and Y. S. Lee. 2009. A comparison on predictive models of gas explosions. Korean J. Chem. Eng 26:313–23.
  • Patankar, S. V., and D. B. Spalding. 1972. A calculation procedure fro heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15:1787–806.
  • Pelce-Savornin, C., J. Quinard, and G. Searby. 1958. The flow field of a curved flame propagating freely upwards. Comb. Sci. And Tech. 58:337–46.
  • Peng, Z., J. Zanganeh, R. Ingle, P. Nakod, D. F. Fletcher, and B. Moghtaderi. 2018. CFD Investigation of Flame and Pressure Wave Propagation Through Variable Concentration Methane-Air Mixtures in a Tube Closed at One End.Fuel (Submitted).
  • Piece, C. D. 2001. Progress-variable approach for large-eddy simulation of turbulence combustion. Ph.D Thesis, Stanford University.
  • Valiev, D., V. Bychkov, V. Akkerman, and L. E. Eriksson. 2009. Different stages of flame acceleration from slowing burning to Chapman-Jouguet deflagration. Phys. Rev. E 80:036317.
  • VAN DEN BERG, A. C. 1989. REAGAS a code for numerical simulation of 2-D reactive gas dynamics in gas explosions. PML-TN0 Report PML 1989.IN48, Rijswijk, The Netherlands.
  • VAN OIJEN, J. A., and L. P. H. DE GOEY. 2000. Modelling of premixed laminar flames using Flamelet-Generated Manifolds. Combust. Sci. Tech 161:113–37.
  • VAN OIJEN, J. A., and L. P. H. DE GOEY. 2002. Modelling of premixed counter-flow flames using the flamelet-generated manifold method. Combust. Theory Model 6:463–78.
  • VAN OIJEN, J. A., F. A. Lammers, and L. P. H. DE GOEY. 2001. Modeling of complex premixed burner systems by using Flamelet-Generated Manifolds. Combust. Flame 127:2124–34.
  • Venetsanos, A., D. Baraldi, P. Adams, P. Heggem, and H. Wilkening. 2008. CFD modelling of hydrogen release, dispersion and combustion for automotive scenarios. J. Loss Prevent. Process Ind. 21:162–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.