252
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous Reconstruction of the Temperature and Inhomogeneous Radiative Properties of Soot in Atmospheric and Pressurized Ethylene/Air Flames

, ORCID Icon, , &
Pages 1946-1962 | Received 05 Mar 2019, Accepted 12 Jun 2019, Published online: 18 Jun 2019

References

  • Amin, H. M., and W. L. Roberts. 2017. Soot measurements by two angle scattering and extinction in an N2-diluted ethylene/air counterflow diffusion flame from 2 to 5 atm. Proc. Combust. Inst. 36 (1):861–69.
  • Appel, J., Jungfleisch, B., Marquardt, M., Suntz R., and H. Bockhorn. 1996. Assessment of soot volume fractions from laser-induced incancescence by comparison with extinction measurements in laminar, premixed, flat flames. Proc. Combust. Inst. 26 (2):2387–95.
  • Bladh, H., Johnsson, J., Olofsson, N.-E., Bohlin, Alexis, and P-E. Bengtsson. 2011. Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame. Proc. Combust. Inst. 33 (1):641–48.
  • Cheng, Q., and H. C. Zhou. 2007. The DRESOR method for a collimated irradiation on an isotropically scattering layer. J. Heat Transfer 129 (5):634–45.
  • Cheng, Q., Zhang, X., Wang, Z., Zhou, H. and Shao, S. 2014. Simultaneous measurement of three-dimensional temperature distributions and radiative properties based on radiation image processing technology in a gas-fired pilot tubular furnace. Heat Transfer Eng. 35 (6–8):770–79.
  • Cheng, Q., Zhou, H. C., Yu, Y. L., and Huang, D. X. 2008. Highly-directional radiative intensity in a 2-D rectangular enclosure calculated by the DRESOR method. Numer. Heat Transfer, Part B 54 (4):354–67.
  • Chernov, V., Zhang, Q., Thomson, M. J., and Dworkin, S. B. 2012. Numerical investigation of soot formation mechanisms in partially-premixed ethylene–Air co-flow flames. Combust. Flame 159 (9):2789–98.
  • Dobbins, R., R. Santoro, and H. Semerjian. 1991. Analysis of light scattering from soot using optical cross sections for aggregates. Symp. (Int.) Combust. 23 (1):1525–32.
  • Dong, L. 2016. Simultaneous reconstruction of temperature field and radiative properties by inverse radiation analysis using stochastic particle swarm optimization. Therm. Sci. 20 (00):493–504.
  • Dworkin, S. B., Zhang, Q., Thomson, M. J., Slavinskaya, N. A. and Riedel, U. 2011. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust. Flame 158 (9):1682–95.
  • Eaves, N. A., Veshkini, A., Riese, C., Zhang, Q., Dworkin, S. B. and Thomson, M. J. 2012. A numerical study of high pressure, laminar, sooting, ethane–Air coflow diffusion flames. Combust. Flame 159 (10):3179–90.
  • Eaves, N. A., Zhang, Q., Liu, F., Guo, H., Dworkin, S. B. and Thomson, M. J. 2016. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Comput. Phys. Commun. 207:464–77.
  • Guannan, L., and L. Dong. 2018. Simultaneous reconstruction of temperature and concentration profiles of soot and metal-oxide nanoparticles in asymmetric nanofluid fuel flames by inverse analysis. J. Quant. Spectrosc. Radiat. Transf. 219: 174–85
  • Gülder, Ö. L. 1995. Effects of oxygen on soot formation in methane, propane, and n-butane diffusion flames. Combust. Flame 101 (3):302–10.
  • Holloway, J. P., Shannon, S., Sepke, S. M., and Brake, M. L. 2001. A reconstruction algorithm for a spatially resolved plasma optical emission spectroscopy sensor. J. Quant. Spectrosc. Radiat. Transf. 68 (1):101–15.
  • Huang, Q., Yu, D., Cai, X., Wang, F., Yan, J. and Chi, Y. 2013. Temperature and Soot Volume Fraction Distributions Reconstruction for Swirling Flame. Proc. Csee 33 (20):80–87.
  • Huang, Q. X., Wang, F., Liu, D., Ma, Z. Y., Yan, J. H., Chi, Y. and Cen, K. F. 2009. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography. Combust. Flame 156 (3):565–73.
  • Huang, X., Qi, H., Niu, C., Ruan, L., Tan, H., Sun, J. and Xu, C. 2016. Simultaneous reconstruction of 3D temperature distribution and radiative properties of participating media based on the multi-spectral light-field imaging technique. Appl. Therm. Eng. 115:1337–47.
  • Jensen, K. A., J. M. Suo-Anttila, and L. G. Blevins. 2007. Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires. Combust. Sci. Technol. 179 (12):2453–87.
  • Köylü, Ü. Ö., Faeth, G., Farias, T. L., and Carvalho, M. D. G. 1995. Fractal and projected structure properties of soot aggregates. Combust. Flame 100 (4):621–33.
  • Li, J., Hossain, M. M., Sun, J., Liu, Y., Zhang, B., Tachtatzis, C., and C. Xu. 2019. Simultaneous measurement of flame temperature and absorption coefficient through LMBC-NNLS and plenoptic imaging techniques. Appl. Therm. Eng. 154:711–25.
  • Link, O., Snelling, D., Thomson, K., and G. J. Smallwood. 2011. Development of absolute intensity multi-angle light scattering for the determination of polydisperse soot aggregate properties. Proc. Combust. Inst. 33 (1):847–54.
  • Liu, F., K. Thomson, and G. Smallwood. 2009. Numerical investigation of the effect of signal trapping on soot measurements using LII in laminar coflow diffusion flames. Appl Phys B 96 (4):671–82.
  • Liu, H., Zheng, S., Zhou, H., and C. Qi. 2016. Measurement of distributions of temperature and wavelength-dependent emissivity of a laminar diffusion flame using hyper-spectral imaging technique. Meas. Sci. Technol. 27 (2):025201.
  • Liu, L., and M. I. Mishchenko. 2005. Effects of aggregation on scattering and radiative properties of soot aerosols. J. Geophys. Res. Atmos. 110:D11.
  • Lou, C., Li, W. H., Zhou, H. C., and C. T. Salinas. 2011. Experimental investigation on simultaneous measurement of temperature distributions and radiative properties in an oil-fired tunnel furnace by radiation analysis. Int. J. Heat Mass Transf. 54 (1):1–8.
  • Ni, T., Pinson, J. A., Gupta, S., and Santoro, R. J. 1995. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. Appl Opt 34 (30):7083–91.
  • Niu, C. Y., Qi, H., Huang, X., Ruan, L. M. and Tan, H. P. 2016. Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media. J Quant Spectrosc Radiat Transf 184:44–57.
  • Popovitcheva, O. B., Persiantseva, N. M., Trukhin, M. E., Rulev, G. B., Shonija, N. K., Buriko, Y. Y., Starik, A. M., Demirdjian, B., Ferry, D. and Suzanne, J. 2000. Experimental characterization of aircraft combustor soot: Microstructure, surface area, porosity and water adsorption. PCCP 19 (2):4421–26.
  • Regińska, T. 1996. A regularization parameter in discrete ill-posed problems. SIAM J. Sci. Comput. 17 (3):740–49.
  • Reimann, J., S.-A. Kuhlmann, and S. Will. 2009. 2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS). Appl Phys B 96 (4):583–92.
  • Shaddix, C. R., and K. C. Smyth. 1996. Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust. Flame 107 (4):418–52.
  • Si, M., Cheng, Q., Song, J., Liu, Y., Tao, M. and Lou, C. 2017. Study on inversion of morphological parameters of soot aggregates in hydrocarbon flames. Combust. Flame 183:261–70.
  • Slavinskaya, N. A., and P. Frank. 2009. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combust. Flame 156 (9):1705–22.
  • Smyth, K. C., and C. R. Shaddix. 1996. The elusive history of m≌1.57–0.56i for the refractive index of soot. Combust. Flame 107 (3):314–20.
  • Snelling, D., Link, O., Thomson, K., and Smallwood, G. J. 2011. Measurement of soot morphology by integrated LII and elastic light scattering. Appl Phys B 104 (2):385–97.
  • Sorensen, C. 2001. Light scattering by fractal aggregates: A review. Aerosol Sci Technol 35 (2):648–87.
  • Sun, J., Xu, C., Zhang, B., Hossain, M. M., Wang, S., Qi, H. and Tan, H. 2016. Three-dimensional temperature field measurement of flame using a single light field camera. Opt Express 24 (2):1118–32.
  • Thomson, K. A., Gülder, Ö. L., Weckman, E. J., Fraser, R. A., Smallwood, G. J. and Snelling, D. R. 2005. Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa. Combust. Flame 140 (3):222–32.
  • Thouy, R., and R. Jullien. 1994. A cluster-cluster aggregation model with tunable fractal dimension. J. Phys. A: Math. Gen. 27 (9):2953.
  • Veshkini, A., S. B. Dworkin, and M. J. Thomson. 2014. A soot particle surface reactivity model applied to a wide range of laminar ethylene/air flames. Combust. Flame 161 (12):3191–200.
  • Wang, Y.-F., Huang, Q.-x., Wang, F., Chi, Y. and Yan, J. H. 2017. Effects of morphology and wavelength on the measurement accuracy of soot volume fraction by laser extinction. Meas. Sci. Technol. 29 (1):015202.
  • Williams, T. C., Shaddix, C. R., Jensen, K. A., and Suo-Anttila, J. M. 2007. Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames. Int. J. Heat Mass Transf. 50 (7):1616–30.
  • Yan, W., and C. Lou. 2013. Two-dimensional distributions of temperature and soot volume fraction inversed from visible flame images. Exp. Therm. Fluid Sci. 50:229–33.
  • Zhou, H., Han, S., Lou, C., and Liu, H. 2002. A new model of radiative image formation used in visualization of 3-D temperature distributions in large-scale furnaces. Numer. Heat Transfer, Part B 42 (3):243–58.
  • Zhou, H.-C., D.-L. Chen, and Q. Cheng. 2004. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. J. Quant. Spectrosc. Radiat. Transf. 83 (3):459–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.