369
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Pore Size and Surface Morphology during Devolatilization of Coconut Fiber and Sugarcane Bagasse

&
Pages 2326-2344 | Received 27 Apr 2019, Accepted 16 Jul 2019, Published online: 01 Aug 2019

References

  • Adebisi, J. A., J. O. Agunsoye, S. A. Bello, M Haris, M. M. Ramakokovhu, M. O. Daramola, and S. B. Hassan. 2017. Proximate analysis and physicochemical properties of sugarcane bagasse, cassava periderm and maize stalk. In International workshop on advanced functional nanomaterials – IWAN 4. 67–76. Chennai, Tamil Nadu: Centre for Nanoscience and Technology, Anna University.
  • Avinash Kumar, A. 2007. Electrification and bio-energy options in rural India. Italy: India Infrastructure Report.
  • Barrett, E. P., L. G. Joyner, and P. P. Halenda. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73:373–80. doi:10.1021/ja01145a126.
  • Bhatia, S. K., and D. D. Perlmutter. 1980. A random pore model for fluid-solid reactions: 1. Isothermal, kinetic control. AlChE J. 26 (3):379–86. doi:10.1002/aic.690260308.
  • Bhatia, S. K., and D. D. Perlmutter. 1981. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AlChE J. 27 (2):247–54. doi:10.1002/aic.690270211.
  • Biagini, E., P. Narducci, and L. Tognotti. 2008. Size and structural characterization of lignin-cellulosic fuels after the rapid devolatilization. Fuel 87:177–86. doi:10.1016/j.fuel.2007.04.010.
  • Bonelli, P. R., E. L. Buonomo, and A. L. Cukierma. 2007. Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal. Energy Sources Part A 29 (8):731–40. doi:10.1080/00908310500281247.
  • Bradd, E. L. 2009. Understanding adsorption in mesoporous materials through lattice-based density functional theory and Monte Carlo simulation. Amherst: University of Massachusetts - Amherst.
  • Combustion, Gasification & Propulsion Laboratory, IISc, Bangalore, India. 2010. Biomass knowledge portal. [Online]. Accessed February 14, 2019. https://biomasspower.gov.in/karnataka.php
  • Conti, J. 2016 May. International energy outlook 2016, with projections to 2040. Washington: Department of Energy, U.S. Energy Information Administration.
  • Deng, Y. Y., M. Koper, M. Haigh, and V. Dornburg. 2015. Country-level assessment of long-term global bioenergy potential. Biomass Bioenergy 74:253–67. doi:10.1016/j.biombioe.2014.12.003.
  • Dudley. 2018. British petroleum energy outlook. London, UK: British Petroleum.
  • Everson, R. C., R. Sakurovs, H. W. J. P. Neomagus, R. C. Everson, J. P. Mathews, and J. R. Bunt. 2017. Particle size influence on the pore development of nanopores in coal gasification chars: From micron to millimeter particles. Carbon 112:37–46. doi:10.1016/j.carbon.2016.10.088.
  • Gleysteen, L. F., and V. R. Deitz. 1945. Hysteresis in the physical adsorption of Nitrogen on bone char and other adsorbents. J. Res. Natl. Bur. Stand. 35 (4):285–307. doi:10.6028/jres.035.013.
  • Hiloidhari, M., D. Das, and D. C. Baruah. 2014. Bioenergy potential from crop residue biomass in India. Renewable Sustainable Energy Rev. 32:504–12. doi:10.1016/j.rser.2014.01.025.
  • Jayaraman, K., I. Gokalp, S. Petrus, V. Belandria, and S. Bostyn. 2018. Energy recovery analysis from sugar cane bagasse pyrolysis and gasification using thermogravimetry, mass spectrometry and kinetic models. J. Anal. Appl. Pyrolysis 132:225–36. doi:10.1016/j.jaap.2018.02.003.
  • Kenneth, S. 2001. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf. A 187–189:3–9.
  • Kenneth, S. W. S., and T. W. Ruth. 2004. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22 (10):773–82. doi:10.1260/0263617053499032.
  • Kumar, A., K. Nitin, B. Prashant, and S. Ashish. 2015. A review on biomass energy resources, potential, conversion and policy in India. Renewable Sustainable Energy Rev. 45:530–39. doi:10.1016/j.rser.2015.02.007.
  • Lowell, S., J. E. Shields, M. A. Thomas, and M. Thommes. 2004. Characterization of porous solids and powders: Surface area, pore size and density. United States of America: Kluwer Academic Publishers.
  • Lu, H., E. Ip, J. Scott, P. Foster, M. Vickers, and L. L. Baxter. 2010. Effects of particle shape and size on devolatilization of biomass particle. Fuel 89:1156–68. doi:10.1016/j.fuel.2008.10.023.
  • Mani, T., P. Murugan, J. Abedi, and N. Mahinpey. 2010. Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem. Eng. Res. Des. 88 (8):952–58. doi:10.1016/j.cherd.2010.02.008.
  • Ounas, A., A. Aboulkas, A. Bacaoui, and A. Yaacoubi. 2011. Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis. Bioresour. Technol. 102:11234–38. doi:10.1016/j.biortech.2011.09.010.
  • Qi, L., X. Tang, Z. Wang, and X. Peng. 2017. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 27 (2):371–77. doi:10.1016/j.ijmst.2017.01.005.
  • Rajiv Kumar, C. 2018. Will India’s coal power pose a threat to limiting global warming to safe levels? Curr. Sci. 114 (9):1812–14. doi:10.18520/cs/v114/i09/1812-1814.
  • Ranganadham, M. V. S. 2018. Energy statistics. Energy statistics report, twenty fifth issue. New Delhi: Government of India Ministry of Statistics and Programme Implementation Government of India.
  • Rashad, A. H. 2013. Biomass production for energy in India: Review. J. Technol. Innovations Renewable Energy 2 (4):1–10.
  • Sage, R. F., M. M. Peixoto, and T. L. Sage. 2013. Photosynthesis in sugarcane. In Sugarcane: Physiology, biochemistry, and functional biology, 121–54. John Wiley & Sons Ltd.
  • Saidur, R., E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef. 2011. A review on biomass as a fuel for boilers. Renewable Sustainable Energy Rev. 15 (5):2262–89. doi:10.1016/j.rser.2011.02.015.
  • Sextona, D. C., J. M. Steera, R. Marsh, and M. Greenslade. 2018. Investigating char agglomeration in blast furnace coal injection. Fuel Process. Technol. 178:24–34. doi:10.1016/j.fuproc.2018.05.013.
  • Singh, R., and A. D. Setiawan. 2013. Biomass energy policies and strategies: Harvesting potential in India and Indonesia. Renewable Sustainable Energy Rev. 22:332–45. doi:10.1016/j.rser.2013.01.043.
  • Speight, J. G. 2013. Coal-fired power generation Handbook. New Jersey: John Wiley & Sons, Inc. Hoboken.
  • Swapan, S., and G. Shalini. 2017. Pyrolysis of coconut husk biomass: Analysis of its biochar properties. Energy Sources Part A 39 (8):761–67. doi:10.1080/15567036.2016.1263252.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 87 (9–10):1–19. doi:10.1515/pac-2014-1117.
  • Vyas, A., T. Chellappa, and J. L. Goldfarb. 2017. Porosity development and reactivity changes of coal–Biomass blendsduring co-pyrolysis at various temperatures. J. Anal. Appl. Pyrolysis 124:79–88. doi:10.1016/j.jaap.2017.02.018.
  • Xu, K., S. Hu, Y. Wang, L. Zhang, S. Su, L. Jiang, … J. Xiang. 2018. Relation between char structures and formation of volatiles during the pyrolysis of Shenfu coal: Further understanding on the effects of mobile phase and fixed phase. Fuel Process. Technol. 178:379–85. doi:10.1016/j.fuproc.2018.07.022.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yesid Javier, R.-O., and T. Katia. 2015. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour. Technol. 196:136–44. doi:10.1016/j.biortech.2015.07.062.
  • Zhang, Y., M. Zhai, X. Wang, J. Sun, P. Dong, P. Liu, and Q. Zhu. 2015. Preparation and characteristics of biomass char. Bio Resour. 10 (2):3017–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.