253
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation for Mine Oblique Lane Fire Based on PDF Non-Premixed Combustion

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 90-109 | Received 22 Feb 2019, Accepted 25 Jul 2019, Published online: 06 Aug 2019

References

  • Atkinson, G. T., and Y. Wu. 1996. Smoke control in sloping tunnels. Fire Saf. J. 27:335–41. doi:10.1016/S0379-7112(96)00061-6.
  • Chow, W. K., Y. Gao, J. F. Zou, Q. K. Liu, C. L. Chow, and L. Miao. 2018. Numerical studies on thermally-induced air flow in sloping tunnels with experimental scale modelling justifications. Fire Technol. 54:867–92. doi:10.1007/s10694-018-0713-3.
  • Danziger, N. H., and W. D. Kennedy 1982. Longitudinal ventilation analysis for the Glenwood canyon tunnels [C]. Proceedings of the 4th International Symposium of Aerodynamics and Ventilation of Vehicle Tunnels, York, UK. Bedfordshire: BHR Group Conference Publication, 169–86.
  • Du, T., D. Yang, and Y. Ding. 2018. Driving force for preventing smoke backlayering in downhill tunnel fires using forced longitudinal ventilation. Tunn. Undergr. Sp. Tech. 79:76–82. doi:10.1016/j.tust.2018.05.005.
  • Fan, C. G., X. Y. Li, Y. Mu, F. Y. Guo, and J. Ji. 2017. Smoke movement characteristics under stack effect in a mine laneway fire. Appl. Therm. Eng. 110:70–79. doi:10.1016/j.applthermaleng.2016.08.120.
  • Fu, P. F., H. C. Zhou, Q. X. Yu, S. C. Jiang, and R. L. Ye. 2005. Study on the fire-throttling process of tunnel fire and its influence factors. J. China Coal Soc. 30:146–50.
  • He, L., Z. S. Xu, H. G. Chen, Q. L. Liu, Y. X. Wang, and Y. Zhou. 2018. Analysis of entrainment phenomenon near mechanical exhaust vent and a prediction model for smoke temperature in tunnel fire. Tunn. Undergr. Sp. Tech. 80:143–50. doi:10.1016/j.tust.2018.06.011.
  • Huang, Y. B., S. R. Lv, and K. Yang. 2015. Study on the affection factors of critical wind velocity in tunnel fire. Fire Sci. Tech. 34:866–69. (in Chinese).
  • Huo, Y., Y. Gao, and W. K. Chow. 2015. A study on ceiling jet characteristics in an inclined tunnel. Tunn. Undergr. Sp. Tech. 50:32–46. doi:10.1016/j.tust.2015.06.009.
  • Ji, J., H. X. Wan, K. Y. Li, J. Y. Han, and J. H. Sun. 2015a. A numerical study on upstream maximum temperature in inclined urban road tunnel fires. Int. J. Heat Mass Transf. 88:516–26. doi:10.1016/j.ijheatmasstransfer.2015.05.002.
  • Ji, J., X. Y. Yuan, K. Y. Li, and J. H. Sun. 2015b. Influence of the external wind on flame shapes of n-heptane pool fires in long passage connected to a shaft. Combust. Flame 162:2098–107. doi:10.1016/j.combustflame.2015.01.008.
  • Ji, J., Z. H. Gao, C. G. Fan, W. Zhong, and J. H. Sun. 2012. A study of the effect of plug-holing and boundary layer separation on natural ventilation with vertical shaft in urban road tunnel fires. Int. J. Heat Mass Transf. 55:6032–41. doi:10.1016/j.ijheatmasstransfer.2012.06.014.
  • Jiang, J. C., and X. S. Wang. 1997. The mine tunnel fire smoke flow field model. Min Metall. Eng. 17:6–10. (in Chinese).
  • Jiao, Y., X. Q. Zhou, and Y. T. Kang. 2010. Theoretical analysis and experimental study on backflow smoke of mine laneway wood fire. J. China Coal Soc. 35:2105–10.
  • Li, J. M., P. Xu, Y. F. Li, Z. H. Huang, Y. Tian, and Y. H. Zhao. 2017. Numerical and experimental study of the critical velocity in titled tunnel. J. Beijing Univ. Technol. 43:1706–12. (in Chinese).
  • Li, Z. X., Y. D. Wang, G. C. Gao, and Z. L. Lu. 2015a. Development of local resistance model of roadway fire flames and parameter identification. J. China Coal Soc. 40:909–14.
  • Li, Z. X., Y. D. Wang, and L. Li. 2015b. 3D simulation of disaster process in mine ventilation system during fire period. J. China Coal Soc. 40:115–21.
  • Lin, Y. J., X. L. Zhang, and L. H. Hu. 2018. An experimental study and analysis on maximum horizontal extents of buoyant turbulent diffusion flames subject to relative strong cross flows. Fuel 234:508–15. doi:10.1016/j.fuel.2018.07.038.
  • Liu, J., Y. H. Wang, J. Li, and Z. X. Li. 2015. Numerical simulation for the countercurrent fire change regularity in the inclined tunnel. J. Saf. Environ. 15:94–97. (in Chinese).
  • McGrattan, K., S. Hostikka, R. McDermott, and J. E. Floyd 2014. Fire Dynamics Simulator: Technical Reference Guide (Version 6).
  • Mei, F. Z., F. Tang, X. Ling, and J. S. Yu. 2017. Evolution characteristics of fire smoke layer thickness in a mechanical ventilation tunnel with multiple point extraction. Appl. Therm. Eng. 111:248–56. doi:10.1016/j.applthermaleng.2016.09.064.
  • Niu, H. Y., C. L. Qiao, J. Y. An, and J. Deng. 2015. Experimental study and numerical simulation of spread law for fire on tunnel. J. Cent. South Univ. 22:701–06. doi:10.1007/s11771-015-2573-z.
  • Oka, Y., and G. T. Atkinson. 1995. Control of smoke flow in tunnel fires. Fire Saf. J. 25:305–22. doi:10.1016/0379-7112(96)00007-0.
  • Shafee, S., U. Yamali, and A. Yozgatligil. 2017. Experimental investigation on the mass loss rates of thin-layered n-heptane pool fires in longitudinally ventilated reduced scale tunnel. Combust. Sci. Technol. 189:1907–23. doi:10.1080/00102202.2017.1338693.
  • Shiotani, M., and H. Avai 1967. Lateral structure of gusts in high winds. International Conference on the Wind Effect on Building and Strctures. Cambridge: Cambridge University Press. 535-555.
  • Tang, F., L. J. Li, F. Z. Mei, and M. S. Dong. 2016. Thermal smoke back-layering flow length with ceiling extraction at upstream side of fire source in a longitudinal ventilated tunnel. Appl. Therm. Eng. 106:125–30. doi:10.1016/j.applthermaleng.2016.05.173.
  • Tang, F., L. J. Li, M. S. Dong, Q. Wang, F. Z. Mei, and L. H. Hu. 2017. Characterization of buoyant flow stratification behaviors by Richardson (Froude) number in a tunnel fire with complex combination of longitudinal ventilation and ceiling extraction. Appl. Therm. Eng. 110:1021–28. doi:10.1016/j.applthermaleng.2016.08.224.
  • Tang, F., Q. He, F. Z. Mei, Q. Wang, and H. Zhang. 2018. Effect of ceiling centralized mechanical smoke exhaust on the critical velocity that inhibits the reverse flow of thermal plume in a longitudinal ventilated tunnel. Tunn. Undergr. Sp. Tech. 82:191–98. doi:10.1016/j.tust.2018.08.039.
  • Wang, Y. D., R. Zhang, and Y. L. Zhang. 2018. Domestic and international research on the critical velocity of fires in tunnels. Mod. Tunnelling Technol. 55:14–24. (in Chinese).
  • Wen, H., D. Zhang, and X. Z. Zheng. 2017. Study on numerical simulation and feature parameters of fire disasters occurred in mine roadway. Coal Sci. Technol. 45:62–67. (in Chinese).
  • Weng, M. C., L. X. Yu, F. Liu, and P. V. Nielsen. 2014. Full-scale experiment and CFD simulation on smoke movement and smoke control in a metro tunnel with one opening portal. Tunn. Undergr. Sp. Tech. 42:96–104. doi:10.1016/j.tust.2014.02.007.
  • Wu, J., and F. Shen. 2016. Experimental study on the effects of ventilation on smoke movement in tunnel fires. Int. J. Vent. 15:94–103. doi:10.1080/14733315.2016.1173295.
  • Yang, D., Y. Ding, T. Du, S. H. Mao, and Z. J. Zhang. 2018. Buoyant back-layering and the critical condition for preventing back-layering fluid in inclined tunnels under natural ventilation: Brine water experiments. Exp. Therm. Fluid. Sci. 90:319–29. doi:10.1016/j.expthermflusci.2017.08.015.
  • Zhang, X. C., H. W. Tao, Z. J. Zhang, F. Tang, G. K. Su, and S. Chen. 2018. Temperature profile beneath an inclined ceiling induced by plume impingement of gas fuel jet flame. Fuel 223:408–13. doi:10.1016/j.fuel.2018.03.026.
  • Zhang, Z. 2017. Simulation and division of danger areas of smoke flow of belt fire in coal mine. Xi`an Univ Sci Technol (in Chinese).
  • Zheng, L. M. 2015. ANSYS fluent 15.0: Fluid computing from initial to proficient. Beijing: Publishing House of Electronics Industry.
  • Zhong, M. H., C. L. Shi, L. He, J. H. Shi, C. Liu, and X. L. Tian. 2016. Smoke development in full-scale sloped long and large curved tunnel fires under natural ventilation. Appl. Therm. Eng. 108:857–65. doi:10.1016/j.applthermaleng.2016.07.141.
  • Zhong, W., Z. Z. Li, T. Wang, T. S. Liang, and Z. Liu. 2015. Experimental study on the influence of different transverse fire locations on the critical longitudinal ventilation velocity in tunnel fires. Fire Technol 51:1217–30. doi:10.1007/s10694-015-0461-6.
  • Zhou, X. Q. 1996. Theory and practice of mine fire relief. Beijing: China Coal Industry Publishing House. (in Chinese).
  • Zhu, K., Y. Z. Yao, S. G. Zhang, H. Yang, R. F. Zhang, and X. D. Cheng. 2017. Smoke movement in a sloping subway tunnel under longitudinal ventilation with blockage. Fire Technol 53:1985–2006. doi:10.1007/s10694-017-0667-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.