385
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Numerical Study on the Combustion Process of n-heptane Spray Flame in Methane Environment Using Large Eddy Simulation

, , , , , & show all
Pages 142-166 | Received 04 Nov 2018, Accepted 09 Aug 2019, Published online: 21 Aug 2019

References

  • Agarwal, A. K., A. P. Singh, and R. K. Maurya. 2017. Evolution, challenges and path forward for low temperature combustion engines. Prog. Energy Combust. Sci. 61:1–56. doi:10.1016/j.pecs.2017.02.001.
  • Aggarwal, S. K., O. Awomolo, and K. Akber. 2011. Ignition characteristics of heptane–hydrogen and heptane–methane fuel blends at elevated pressures. Int. J. Hydrogen Energy 36:15392–402. doi:10.1016/j.ijhydene.2011.08.065.
  • Amsden, A. A. 1997. KIVA3V: a block-structured KIVA program for engines with vertical or canted valves. Los Alamos: Los Alamos National Lab.
  • Azimov, U., K.-S. Kim, and C. Bae. 2010. Modeling of flame lift-off length in diesel low-temperature combustion with multi-dimensional CFD based on the flame surface density and extinction concept. Combust. Theory Modell. 14:155–75. doi:10.1080/13647831003713930.
  • Bekdemir, C., L. M. T. Somers, L. P. H. de Goey, J. Tillou, and C. Angelberger. 2013. Predicting diesel combustion characteristics with large-eddy simulations including tabulated chemical kinetics. Proc. Combust. Inst. 34:3067–74. doi:10.1016/j.proci.2012.06.160.
  • Bharadwaj, N., C. Rutland, and S. Chang. 2009. Large eddy simulation modelling of spray-induced turbulence effects. Int. J. Engine Res. 10:97–119. doi:10.1243/14680874JER02309.
  • CHEMKIN-PRO 15131. 2013. Reaction design. CA: San Diego.
  • Daca, A. E., and Ö. L. Gülder. 2017. Soot formation characteristics of diffusion flames of methane doped with toluene and n-heptane at elevated pressures. Proc. Combust. Inst. 36:737–44. doi:10.1016/j.proci.2016.07.046.
  • Demosthenous, E., G. Borghesi, E. Mastorakos, and R. S. Cant. 2016. Direct numerical simulations of premixed methane flame initiation by pilot n-heptane spray autoignition. Combust. Flame 163:122–37. doi:10.1016/j.combustflame.2015.09.013.
  • Desantes, J. M., J. V. Pastor, J. M. García-Oliver, and F. J. Briceño. 2014. An experimental analysis on the evolution of the transient tip penetration in reacting diesel sprays. Combust. Flame 161:2137–50. doi:10.1016/j.combustflame.2014.01.022.
  • Fu, J., J. Shu, F. Zhou, J. Liu, Z. Xu, and D. Zeng. 2017. Experimental investigation on the effects of compression ratio on in-cylinder combustion process and performance improvement of liquefied methane engine. Appl. Therm. Eng. 113:1208–18. doi:10.1016/j.applthermaleng.2016.11.048.
  • García-Oliver, J. M., L.-M. Malbec, H. B. Toda, and G. Bruneaux. 2017. A study on the interaction between local flow and flame structure for mixing-controlled diesel sprays. Combust. Flame 179:157–71. doi:10.1016/j.combustflame.2017.01.023.
  • Ghaderi Masouleh, M., A. Wehrfritz, O. Kaario, H. Kahila, and V. Vuorinen. 2017. Comparative study on chemical kinetic schemes for dual-fuel combustion of n-dodecane/methane blends. Fuel 191:62–76. doi:10.1016/j.fuel.2016.10.114.
  • Idicheria, C. A., and L. M. Pickett. 2007. Quantitative mixing measurements in a vaporizing diesel spray by Rayleigh imaging. SAE Technical Paper, No. 2007-01-0647.
  • Irannejad, A., A. Banaeizadeh, and F. Jaberi. 2015. Large eddy simulation of turbulent spray combustion. Combust. Flame 162:431–50. doi:10.1016/j.combustflame.2014.07.029.
  • Jangi, M., T. Lucchini, G. D’Errico, and X.-S. Bai. 2013. Effects of EGR on the structure and emissions of diesel combustion. Proc. Combust. Inst. 34:3091–98. doi:10.1016/j.proci.2012.06.093.
  • Karim, G. A. 2003. Combustion in gas fueled compression: Ignition engines of the dual fuel type. J. Eng. Gas Turbines Power 125:827–36. doi:10.1115/1.1581894.
  • Kerstein, A. R. 1989. Linear-eddy modeling of turbulent transport. II: Application to shear layer mixing. Combust. Flame 75:397–413. doi:10.1016/0010-2180(89)90051-5.
  • Kundu, P., M. M. Ameen, and S. Som. 2017. Importance of turbulence-chemistry interactions at low temperature engine conditions. Combust. Flame 183:283–98. doi:10.1016/j.combustflame.2017.05.025.
  • Levine, R. D. 2009. Molecular reaction dynamics. UK: Cambridge University Press.
  • Li, Y., H. Li, H. Guo, Y. Li, and M. Yao. 2017. A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model. Appl. Energy 205:153–62. doi:10.1016/j.apenergy.2017.07.071.
  • Liu, S., H. Li, T. Gatts, C. Liew, S. Wayne, G. Thompson, N. Clark, and J. Nuszkowski. 2012. An investigation of NO2 emissions from a heavy-duty diesel engine fumigated with H2 and natural gas. Combust. Sci. Technol. 184:2008–35. doi:10.1080/00102202.2012.695828.
  • Liu, S. L., J. C. Hewson, J. H. Chen, and H. Pitsch. 2004. Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow. Combust. Flame 137:320–39. doi:10.1016/j.combustflame.2004.01.011.
  • Luo, Z., C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and T. Lu. 2012. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame 159:265–74. doi:10.1016/j.combustflame.2011.05.023.
  • Manias, D. M., E. A. Tingas, C. E. Frouzakis, K. Boulouchos, and D. A. Goussis. 2016. The mechanism by which CH2O and H2O2 additives affect the autoignition of CH4/air mixtures. Combust. Flame 164:111–25. doi:10.1016/j.combustflame.2015.11.008.
  • Martinez, D. M., X. Jiang, C. Moulinec, and D. Emerson. 2014. Numerical assessment of subgrid scale models for scalar transport in large-eddy simulations of hydrogen-enriched fuels. Int. J. Hydrogen Energy 39:7173–89. doi:10.1016/j.ijhydene.2014.03.018.
  • Mastorakos, E. 2009. Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35:57–97. doi:10.1016/j.pecs.2008.07.002.
  • O’Rourke, P. J. 1981. collective drop effects on vaporizing liquid sprays. Engineering.  New Mexico, US: ALos Alamos National Lab.
  • Papagiannakis, R. G., and D. T. Hountalas. 2004. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas. Energy Convers. Manage. 45:2971–87. doi:10.1016/j.enconman.2004.01.013.
  • Patterson, M. A., and R. D. Reitz. 1998. Modeling the effects of fuel spray characteristics on diesel engine combustion and emission. Detroit, USA: SAE International.
  • Payri, R., J. M. García-Oliver, T. Xuan, and M. Bardi. 2015. A study on diesel spray tip penetration and radial expansion under reacting conditions. Appl. Therm. Eng. 90:619–29. doi:10.1016/j.applthermaleng.2015.07.042.
  • Pei, Y., E. R. Hawkes, M. Bolla, S. Kook, G. M. Goldin, Y. Yang, S. B. Pope, and S. Som. 2016. An analysis of the structure of an n-dodecane spray flame using TPDF modelling. Combust. Flame 168:420–35. doi:10.1016/j.combustflame.2015.11.034.
  • Pei, Y., S. Som, E. Pomraning, P. K. Senecal, S. A. Skeen, J. Manin, and L. M. Pickett. 2015. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combust. Flame 162:4442–55. doi:10.1016/j.combustflame.2015.08.010.
  • Pickett, L. M. 2019. Engine combustion network. http://www.sandia.gov/ecn/
  • Pickett, L. M., and D. L. Siebers. 2004. Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combust. Flame 138:114–35. doi:10.1016/j.combustflame.2004.04.006.
  • Schlatter, S., B. Schneider, Y. Wright, and K. Boulouchos. 2012. Experimental study of ignition and combustion characteristics of a diesel pilot spray in a lean premixed methane/air charge using a rapid compression expansion machine. SAE 2012 World Congress and Exhibition, Detroit, MI: SAE International, April 24–26.
  • Schlatter, S., B. Schneider, Y. M. Wright, and K. Boulouchos. 2016. N-heptane micro pilot assisted methane combustion in a rapid compression expansion machine. Fuel 179:339–52. doi:10.1016/j.fuel.2016.03.006.
  • Shan, R., C. S. Yoo, J. H. Chen, and T. Lu. 2012. Computational diagnostics for n-heptane flames with chemical explosive mode analysis. Combust. Flame 159:3119–27. doi:10.1016/j.combustflame.2012.05.012.
  • Smith, G. P. G., M. David, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, et al. http://www.me.berkeley.edu/gri_mech/.
  • Sone, K., N. Patel, and S. Menon. 2001.Large-eddy simulation of fuel-air mixing in an internal combustion engine. 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, 635.
  • Sone, K., and S. Menon. 2003. Effect of subgrid modeling on the in-cylinder unsteady mixing process in a direct injection engine. J. Eng. Gas Turbines Power 125:435–43. doi:10.1115/1.1501918.
  • Soriano, B. S., E. S. Richardson, S. Schlatter, and Y. M. Wright. 2017. Conditional moment closure modelling for dual-fuel combustion engines with pilot-assisted compression ignition. Detroit, USA: SAE International.
  • Srna, A., M. Bolla, Y. M. Wright, K. Herrmann, R. Bombach, S. S. Pandurangi, K. Boulouchos, and G. Bruneaux. 2019. Effect of methane on pilot-fuel auto-ignition in dual-fuel engines. Proc. Combust. Inst37: 4741–4749.
  • van Leer, B. 1974. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J Comput Phys 14:361–70. doi:10.1016/0021-9991(74)90019-9.
  • Wang, Z., and J. Abraham. 2015. Fundamental physics of flame development in an autoigniting dual fuel mixture. Proc. Combust. Inst. 35:1041–48. doi:10.1016/j.proci.2014.06.079.
  • Wei, H., J. Qi, L. Zhou, W. Zhao, and G. Shu. 2018a. Ignition characteristics of methane/n-heptane fuel blends under engine-like conditions. Energy Fuels 32:6264–77. doi:10.1021/acs.energyfuels.7b04128.
  • Wei, H., W. Zhao, L. Zhou, C. Chen, and G. Shu. 2018b. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model. Combust. Theory Modell. 22:237–63. doi:10.1080/13647830.2017.1392044.
  • Wei, H., W. Zhao, L. Zhou, and G. Shu. 2018c. Numerical investigation of diesel spray flame structures under diesel engine-relevant conditions using large eddy simulation. Combust. Sci. Technol. 190:909–32. doi:10.1080/00102202.2017.1417270.
  • Wei, H., W. Zhao, Z. Lu, and L. Zhou. 2019. Effects of oxygen concentrations on the ignition and quasi-steady processes of n-heptane spray flames using large eddy simulation. Fuel 241:786–801. doi:10.1016/j.fuel.2018.12.097.
  • Wu, Z., C. J. Rutland, and Z. Han. 2019. Numerical evaluation of the effect of methane number on natural gas and diesel dual-fuel combustion. Int. J. Engine Res. 1468087418758114.
  • Yao, M., Z. Zheng, and H. Liu. 2009. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. Energy Combust. Sci. 35:398–437. doi:10.1016/j.pecs.2009.05.001.
  • Yousefi, A., M. Birouk, and H. Guo. 2017a. An experimental and numerical study of the effect of diesel injection timing on natural gas/diesel dual-fuel combustion at low load. Fuel 203:642–57. doi:10.1016/j.fuel.2017.05.009.
  • Yousefi, A., M. Birouk, and H. Guo. 2017b. An experimental and numerical study of the effect of diesel injection timing on natural gas/diesel dual-fuel combustion at low load. Fuel 203:642–57. doi:10.1016/j.fuel.2017.05.009.
  • Zhang, P., J. Ran, C. Qin, X. Du, J. Niu, and L. Yang. 2018. Effects of methane addition on exhaust gas emissions and combustion efficiency of the premixed n-heptane/Air combustion. Energy Fuels 32:3900–07. doi:10.1021/acs.energyfuels.7b03469.
  • Zhang, P., W. Ji, T. He, X. He, Z. Wang, B. Yang, and C. K. Law. 2016. First-stage ignition delay in the negative temperature coefficient behavior: Experiment and simulation. Combust. Flame 167:14–23. doi:10.1016/j.combustflame.2016.03.002.
  • Zhou, L., K. H. Luo, W. Qin, M. Jia, and S. J. Shuai. 2015. Large eddy simulation of spray and combustion characteristics with realistic chemistry and high-order numerical scheme under diesel engine-like conditions. Energy Convers. Manage. 93:377–87. doi:10.1016/j.enconman.2015.01.033.
  • Zhou, L., M. Xie, M. Jia, Q. Zhou, and C. Xu. 2011. Influences of subgrid turbulent kinetic energy and turbulent dispersion on the characteristics of fuel spray. Detroit, USA: SAE International.
  • Zhou, L., W. Zhao, and H. Wei. 2018. Large eddy simulation on the flame structure for split injections of n-dodecane at different temperatures and densities. Combust. Sci. Technol. 190:2224–44. doi:10.1080/00102202.2018.1498485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.