287
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical Computation of Turbulent Flow Fields in a Fan-stirred Combustion Bomb

, ORCID Icon, ORCID Icon, , &
Pages 594-610 | Received 25 Mar 2019, Accepted 05 Sep 2019, Published online: 11 Sep 2019

References

  • Abdel-Gayed, R., K. Al-Khishali, and D. Bradley. 1984. Turbulent burning velocities and flame straining in explosions. Proc. R. Soc. London A Math. Phys. Sci. 391:393–414. doi:10.1098/rspa.1984.0019.
  • Akindele, O., D. Bradley, P. Mak, and M. McMahon. 1982. Spark ignition of turbulent gases. Combust. Flame 47:129–55. doi:10.1016/0010-2180(82)90097-9.
  • Bradley, D., M. Haq, R. Hicks, T. Kitagawa, M. Lawes, C. Sheppard, and R. Woolley. 2003. Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combust. Flame 133 (4):415–30. doi:10.1016/S0010-2180(03)00039-7.
  • Bradley, D., M. Lawes, K. Liu, and M. S. Mansour. 2013. Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34 (1):1519–26. doi:10.1016/j.proci.2012.06.060.
  • Bradley, D., M. Lawes, and M. Mansour. 2009. Explosion bomb measurements of ethanol–Air laminar gaseous flame characteristics at pressures up to 1.4 mpa. Combust. Flame 156 (7):1462–70. doi:10.1016/j.combustflame.2009.02.007.
  • Bradley, D., M. Lawes, and M. E. Morsy. 2019. Measurement of turbulence characteristics in a large scale fan-stirred spherical vessel. J. Turbul. 20 (3):195–213. doi:10.1080/14685248.2019.1610566.
  • Dreizler, A., S. Lindenmaier, U. Maas, J. Hult, M. Aldén, and C. Kaminski. 2000. Characterisation of a spark ignition system by planar laser-induced fluorescence of oh at high repetition rates and comparison with chemical kinetic calculations. Appl. Phys. B 70 (2):287–94. doi:10.1007/s003400050047.
  • Fansler, T. D., and E. G. Groff. 1990. Turbulence characteristics of a fan-stirred combustion vessel. Combust. Flame 80 (3):350–54. doi:10.1016/0010-2180(90)90110-D.
  • Farrell, P., and J. Maddison. 2011. Conservative interpolation between volume meshes by local galerkin projection. Comput. Methods Appl. Mech. Eng. 200 (1–4):89–100. doi:10.1016/j.cma.2010.07.015.
  • Ferziger, J. H., and M. Peric. 2002. Computational methods for fluid dynamics. 3 ed. Berlin, Heidelberg: Springer.
  • Fröhlich, J. 2006. Large eddy simulation turbulenter Strömungen. 1 ed. Wiesbaden: Vieweg+Teubner Verlag.
  • Galmiche, B., N. Mazellier, F. Halter, and F. Foucher. 2014. Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using ldv, piv and tr-piv measurements. Exp Fluids 55 (1):1636. doi:10.1007/s00348-013-1636-x.
  • Goulier, J., N. Chaumeix, F. Halter, N. Meynet, and A. Bentab. 2017a. Experimental study of laminar and turbulent flame speed of a spherical flame in a fan-stirred closed vessel for hydrogen safety application. Nucl. Eng. Des. 312:214–27. doi:10.1016/j.nucengdes.2016.07.007.
  • Goulier, J., A. Comandini, F. Halter, and N. Chaumeix. 2017b. Experimental study on turbulent expanding flames of lean hydrogen/air mixtures. Proc. Combust. Inst. 36 (2):2823–32. doi:10.1016/j.proci.2016.06.074.
  • Jasak, H. 1996. Error analysis and estimation for the finite volume method with applications to fluid flows.
  • Jasak, H. 2009. Dynamic mesh handling in openfoam. In 47th AIAA Aerospace Sciences Meeting, January 2009, Orlando, FLorida, USA, AIAA 2009-341.
  • John, V. 2003. Large eddy simulation of turbulent incompressible flows: Analytical and numerical results for a class of LES models, Vol. 34. Springer, Berlin: Springer Science & Business Media.
  • Komen, E., A. Shams, L. Camilo, and B. Koren. 2014. Quasi-dns capabilities of openfoam for different mesh types. Comput. Fluids 96:87–104. doi:10.1016/j.compfluid.2014.02.013.
  • Kwon, S., M.-S. Wu, J. F. Driscoll, and G. M. Faeth. 1992. Flame surface properties of premixed flames in isotropic turbulence: Measurements and numerical simulations. Combust. Flame 88 (2):221–38. doi:10.1016/0010-2180(92)90053-R.
  • Lipatnikov, A., and J. Chomiak. 2007. Global stretch effects in premixed turbulent combustion. Proc. Combust. Inst. 31 (1):1361–68. doi:10.1016/j.proci.2006.07.015.
  • Liu, C., S. Shy, H. Chen, and M. Peng. 2011. On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure. Proc. Combust. Inst. 33 (1):1293–99. doi:10.1016/j.proci.2010.06.083.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion. 2 ed. Philadelphia, U.S.A: RT Edwards, Inc.
  • Pope, S. B. 2012. Turbulent flows. Cambridge, U.K: Cambridge University Press.
  • Sick, V., M. R. Hartman, V. S. Arpaci, and R. W. Anderson. 2001. Turbulent scales in a fan-stirred combustion bomb. Combust. Flame 127 (3):2119–23. doi:10.1016/S0010-2180(01)00314-5.
  • Weiß, M., N. Zarzalis, and R. Suntz. 2008. Experimental study of markstein number effects on laminar flamelet velocity in turbulent premixed flames. Combust. Flame 154 (4):671–91. doi:10.1016/j.combustflame.2008.06.011.
  • Wilcox, D. C. 2006. Turbulence modeling for CFD. 3 ed. California: DCW Industries.
  • Xu, S., S. Huang, R. Huang, W. Wei, X. Cheng, Y. Ma, and Y. Zhang. 2017. Estimation of turbulence characteristics from piv in a high-pressure fan-stirred constant volume combustion chamber. Appl. Therm. Eng. 110:346–55. doi:10.1016/j.applthermaleng.2016.08.149.
  • Zhang, F., H. Bonart, P. Habisreuther, and H. Bockhorn. 2013. Impact of grid refinement on turbulent combustion and combustion noise modeling with large eddy simulation. In High performance computing in science and engineering ‘13ʹ, 259–74. Springer, Cham: Springer.
  • Zhang, F., T. Zirwes, P. Habisreuther, and H. Bockhorn. 2017. Effect of unsteady stretching on the flame local dynamics. Combust. Flame 175:170–79. doi:10.1016/j.combustflame.2016.05.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.