253
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrogen, Methane, Ethylene and Propylene Blending on the Ignition Delay Time of n-Heptane/Toluene Mixtures under Homogeneous and Nonpremixed Counterflowing Conditions

, , &
Pages 812-834 | Received 12 Jul 2019, Accepted 27 Sep 2019, Published online: 12 Oct 2019

References

  • Aggarwal, S., O. Awomolo, and K. Akber. 2011. Ignition characteristics of heptane–Hydrogen and heptane–Methane fuel blends at elevated pressures. Int. J. Hydrog. Energy. 36:15392–402. doi:10.1016/j.ijhydene.2011.08.065.
  • Chaos, M., A. Kazakov, Z. Zhao, and F. L. Dryer. 2007. A high‐temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 39:399–414. doi:10.1002/kin.v39:7.
  • Chen, W., S. Shuai, and J. Wang. 2009. A soot formation embedded reduced reaction mechanism for diesel surrogate fuel. Fuel 88:1927–36. doi:10.1016/j.fuel.2009.03.039.
  • Chen, Z., X. Qin, Y. Ju, Z. Zhao, M. Chaos, and F. L. Dryer. 2007. High temperature ignition and combustion enhancement by dimethyl ether addition to methane–Air mixtures. Proc. Combust. Inst. 31:1215–22. doi:10.1016/j.proci.2006.07.177.
  • Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. 1998. A comprehensive modeling study of n-heptane oxidation. Combust. Flame. 114:149–77. doi:10.1016/S0010-2180(97)00282-4.
  • Dai, P., Z. Chen, and S. Chen. 2014. Ignition of methane with hydrogen and dimethyl ether addition. Fuel 118:1–8. doi:10.1016/j.fuel.2013.10.048.
  • Davis, S., and C. K. Law. 1998. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust. Sci. Technol. 140:427–49. doi:10.1080/00102209808915781.
  • De Vries, J., and E. Petersen. 2007. Autoignition of methane-based fuel blends under gas turbine conditions. Proc. Combust. Inst. 31:3163–71. doi:10.1016/j.proci.2006.07.206.
  • Dong, Y., A. T. Holley, M. G. Andac, F. N. Egolfopoulos, S. G. Davis, P. Middha, and H. Wang. 2005. Extinction of premixed H2/air flames: Chemical kinetics and molecular diffusion effects. Combust. Flame. 142:374–87. doi:10.1016/j.combustflame.2005.03.017.
  • Egolfopoulos, F. N. 1994a. Geometric and radiation effects on steady and unsteady strained laminar flames. Symp. (Int.) Combust. 25( Elsevier):1375–81. doi:10.1016/S0082-0784(06)80780-0.
  • Egolfopoulos, F. N. 1994b. Dynamics and structure of unsteady, strained, laminar premixed flames. Symp. (Int.) Combust. 25( Elsevier):1365–73. doi:10.1016/S0082-0784(06)80779-4.
  • Frolov, S., S. Medvedev, V. Y. Basevich, and F. Frolov. 2013. Self-ignition of hydrocarbon–Hydrogen–Air mixtures. Int. J. Hydrog. Energy. 38:4177–84. doi:10.1016/j.ijhydene.2013.01.075.
  • Gao, Y., R. Shan, S. Lyra, C. Li, H. Wang, J. H. Chen, and T. Lu. 2016. On lumped-reduced reaction model for combustion of liquid fuels. Combust. Flame. 163:437–46. doi:10.1016/j.combustflame.2015.10.018.
  • Holley, A., X. You, E. Dames, H. Wang, and F. N. Egolfopoulos. 2009. Sensitivity of propagation and extinction of large hydrocarbon flames to fuel diffusion. Proc. Combust. Inst. 32:1157–63. doi:10.1016/j.proci.2008.05.067.
  • Hu, E., X. Li, X. Meng, Y. Chen, Y. Cheng, Y. Xie, and Z. Huang. 2015. Laminar flame speeds and ignition delay times of methane–Air mixtures at elevated temperatures and pressures. Fuel 158:1–10. doi:10.1016/j.fuel.2015.05.010.
  • Hui, X., C. Zhang, M. Xia, and C. J. Sung. 2014. Effects of hydrogen addition on combustion characteristics of n-decane/air mixtures. Combust. Flame. 161:2252–62. doi:10.1016/j.combustflame.2014.03.007.
  • Humer, S., A. Frassoldati, S. Granata, T. Faravelli, E. Ranzi, R. Seiser, and K. Seshadri. 2007. Experimental and kinetic modeling study of combustion of JP-8, its surrogates and reference components in laminar nonpremixed flows. Proc. Combust. Inst. 31:393–400. doi:10.1016/j.proci.2006.08.008.
  • Im, H. G., L. L. Raja, R. J. Kee, and L. R. Petzold. 2000. A numerical study of transient ignition in a counterflow nonpremixed methane-air flame using adaptive time integration. Combust. Sci. Technol. 158:341–63. doi:10.1080/00102200008947340.
  • Ji, C., E. Dames, B. Sirjean, H. Wang, and F. N. Egolfopoulos. 2011. An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proc. Combust. Inst. 33:971–78. doi:10.1016/j.proci.2010.06.099.
  • Ji, C., E. Dames, H. Wang, and F. N. Egolfopoulos. 2012. Propagation and extinction of benzene and alkylated benzene flames. Combust. Flame. 159:1070–81. doi:10.1016/j.combustflame.2011.10.017.
  • Ji, C., E. Dames, Y. L. Wang, H. Wang, and F. N. Egolfopoulos. 2010. Propagation and extinction of premixed C5–C12n-alkane flames. Combust. Flame. 157:277–87. doi:10.1016/j.combustflame.2009.06.011.
  • Jiang, X., Y. Pan, W. Sun, Y. Liu, and Z. Huang. 2018. Shock-tube study of the autoignition of n-Butane/Hydrogen mixtures. Energy Fuels 32:809–21. doi:10.1021/acs.energyfuels.7b02423.
  • Kee, R. J., F. M. Rupley, and J. A. Miller 1989. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories: Livermore, CA, Report No. SAND89-8009.
  • Kee, R. J., G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller 1986. A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Sandia National Laboratories: Livermore, CA, Report No. SAND86-8246.
  • Kumar, K., and C. J. Sung. 2007. Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combust. Flame. 151:209–24. doi:10.1016/j.combustflame.2007.05.002.
  • Law, C. K. 2006. Combustion physics. Cambridge, UK: Cambridge university press.
  • Li, Y., L. Zhang, Z. Tian, T. Yuan, J. Wang, B. Yang, and F. Qi. 2009. Experimental study of a fuel-rich premixed toluene flame at low pressure. Energy Fuels 23:1473–85. doi:10.1021/ef800902t.
  • Liu, N., and F. N. Egolfopoulos. 2015. Ignition of Non-Premixed Flames of Ethylene/n-Dodecane Blends. J. Propul. Power. 31:889–95. doi:10.2514/1.B35527.
  • Liu, S., J. C. Hewson, J. H. Chen, and H. Pitsch. 2004. Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow. Combust. Flame. 137:320–39.
  • Lutz, A. E., R. J. Kee, and J. A. Miller 1988. SENKIN: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Livermore, CA: Sandia National Laboratories. Report No. SAND87-8248..
  • Mason, S. D., J. H. Chen, and H. G. Im. 2002. Effects of unsteady scalar dissipation rate on ignition of non-premixed hydrogen/air mixtures in counterflow. Proc. Combust. Inst. 29:1629–36. doi:10.1016/S1540-7489(02)80200-0.
  • Nakaya, S., M. Tsue, M. Kono, O. Imamura, and S. Tomioka. 2015. Effects of thermally cracked component of n-dodecane on supersonic combustion behaviors in a scramjet model combustor. Combust. Flame. 162:3847–53. doi:10.1016/j.combustflame.2015.07.021.
  • Ranzi, E., A. Frassoldati, S. Granata, and T. Faravelli. 2005. Wide-range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes. Ind. Eng. Chem. Res. 44:5170–83. doi:10.1021/ie049318g.
  • Rao, P. N., and D. Kunzru. 2006. Thermal cracking of JP-10: Kinetics and product distribution. J. Anal. Appl. Pyrolysis. 76:154–60. doi:10.1016/j.jaap.2005.10.003.
  • Seiser, R., H. Pitsch, K. Seshadri, W. Pitz, and H. Gurran. 2000. Extinction and autoignition of n-heptane in counterflow configuration. Proc. Combust. Inst. 28:2029–37. doi:10.1016/S0082-0784(00)80610-4.
  • Seiser, R., J. Frank, S. Liu, J. Chen, R. Sigurdsson, and K. Seshadri. 2005. Ignition of hydrogen in unsteady nonpremixed flows. Proc. Combust. Inst. 30:423–30. doi:10.1016/j.proci.2004.08.254.
  • Sirjean, B., E. Dames, D. A. Sheen, X. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, et al. 2009. A high-temperature chemical kinetic model of n-alkane oxidation. JetSurF version 1.0. Accessed October 9, 2019. http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF1.0/index.html.
  • Smolke, J., F. Carbone, F. N. Egolfopoulos, and H. Wang. 2018. Effect of n-dodecane decomposition on its fundamental flame properties. Combust. Flame. 190:65–73. doi:10.1016/j.combustflame.2017.11.009.
  • Subramanian, G., A. Pires Da Cruz, R. Bounaceur, and L. Vervisch. 2007. Chemical impact of CO and H2 addition on the auto-ignition delay of homogeneous n-heptane/air mixtures. Combust. Sci. Technol. 179:1937–62. doi:10.1080/00102200701386065.
  • Wang, H., R. Xu, K. Wang, C. T. Bowman, R. K. Hanson, D. F. Davidson, K. Brezinsky, and F. N. Egolfopoulos. 2018. A physics-based approach to modeling real-fuel combustion chemistry-I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations. Combust. Flame. 193:502–19. doi:10.1016/j.combustflame.2018.03.019.
  • Wang, H., X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. N. Egolfopoulos, and C. K. Law 2007. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm.
  • Wickham, D., J. Engel, B. Hitch, and M. Karpuk. 2001. Initiators for endothermic fuels. J. Propul. Power. 17:1253–57. doi:10.2514/2.5872.
  • You, X., F. N. Egolfopoulos, and H. Wang. 2009. Detailed and simplified kinetic models of n-dodecane oxidation: The role of fuel cracking in aliphatic hydrocarbon combustion. Proc. Combust. Inst. 32:403–10. doi:10.1016/j.proci.2008.06.041.
  • Yu, G., C. K. Law, and C. Wu. 1986. Laminar flame speeds of hydrocarbon+ air mixtures with hydrogen addition. Combust. Flame. 63:339–47. doi:10.1016/0010-2180(86)90003-9.
  • Yuan, T., L. Zhang, Z. Zhou, M. Xie, L. Ye, and F. Qi. 2011. Pyrolysis of n-heptane: Experimental and theoretical study. J. Phys. Chem. A. 115:1593–601. doi:10.1021/jp109640z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.