196
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Experimental and Kinetic Study on Ignition Characteristics of n-Butane/Oxygen-Enriched Air Mixtures in a Heated Meso-Channel

&
Pages 851-868 | Received 13 Apr 2019, Accepted 01 Oct 2019, Published online: 12 Oct 2019

References

  • Assanis, D. N., R. B. Poola, R. Sekar, and G. R. Cataldi. 2001. Study of using oxygen-enriched combustion air for locomotive diesel engines. J. Eng. Gas Turbines Power 123:157–66. doi:10.1115/1.1290590.
  • Baigmohammadi, M., S. Tabejamaat, and M. Faghani-Lamraski. 2017. Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors. Energy 121:657–75. doi:10.1016/j.energy.2017.01.057.
  • Baigmohammadi, M., S. Tabejamaat, and Y. Farsiani. 2015. Experimental study of the effects of geometrical parameters, Reynolds number, and equivalence ratio on methane–oxygen premixed flame dynamics in non-adiabatic cylindrical meso-scale reactors with the backward facing step. Chem. Eng. Sci. 132:215–33. doi:10.1016/j.ces.2015.04.008.
  • CHEMKIN-PRO. 2011. Release 15112. San Diego, CA: Reaction Design, Inc.
  • Chen, J. J., X. H. Gao, and D. G. Xu. 2016. Kinetic effects of hydrogen addition on the catalytic self-ignition of methane over platinum in micro-channels. Chem. Eng. J. 284:1028–34. doi:10.1016/j.cej.2015.09.076.
  • Fernandez-Pello, A. C. 2002. Micropower generation using combustion: Issues and approaches. Proc. Combust. Inst. 29:883–99. doi:10.1016/S1540-7489(02)80113-4.
  • Healy, D., N. S. Donato, C. J. Aul, E. L. Petersen, C. M. Zinner, G. Bourque, and H. J. Curran. 2010a. Isobutane ignition delay time measurements at high pressure and detailed chemical kinetic simulations. Combust. Flame 157:1540–51. doi:10.1016/j.combustflame.2010.01.011.
  • Healy, D., N. S. Donato, C. J. Aul, E. L. Petersen, C. M. Zinner, G. Bourque, and H. J. Curran. 2010b. n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations. Combust. Flame 157:1526–39. doi:10.1016/j.combustflame.2010.01.016.
  • Kaisare, N. S., and D. G. Vlachos. 2012. A review on microcombustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci. 38:321–59. doi:10.1016/j.pecs.2012.01.001.
  • Kamada, T., H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2014. Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile. Combust. Flame 161:37–48. doi:10.1016/j.combustflame.2013.08.013.
  • Kikui, S., T. Kamada, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2015. Characteristics of n -butane weak flames at elevated pressures in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 35:3405–12. doi:10.1016/j.proci.2014.07.029.
  • Kim, K., D. Lee, and S. Kwon. 2006. Effects of thermal and chemical surface–Flame interaction on flame quenching. Combust. Flame 146:19–28. doi:10.1016/j.combustflame.2006.04.012.
  • Kim, N. I., S. Alzumi, T. Yokomori, S. Kato, T. Fujimori, and K. Maruta. 2007. Development and scale effects of small Swiss-roll combustors. Proc. Combust. Inst. 31:3243–50. doi:10.1016/j.proci.2006.08.077.
  • Luo, S. Y., B. Xiao, Z. Q. Hu, S. M. Liu, and Y. W. Guan. 2009. Experimental study on oxygen-enriched combustion of biomass micro fuel. Energy 34:1880–84. doi:10.1016/j.energy.2009.07.036.
  • Maruta, K. 2011. Micro and mesoscale combustion. Proc. Combust. Inst. 33:125–50. doi:10.1016/j.proci.2010.09.005.
  • Maruta, K., T. Kataoka, N. I. Kim, S. Minaev, and R. Fursenko. 2005. Characteristics of combustion in a narrow channel with a temperature gradient. Proc. Combust. Inst. 30:2429–36. doi:10.1016/j.proci.2004.08.245.
  • Miesse, C. M., R. I. Masel, C. D. Jensen, M. A. Shannon, and M. Short. 2004. Submillimeter-scale combustion. AIChE J. 50:3206–14. doi:10.1002/(ISSN)1547-5905.
  • Murphy, J. J., and C. R. Shaddix. 2006. Combustion kinetics of coal chars in oxygen-enriched environments. Combust. Flame 144:710–29. doi:10.1016/j.combustflame.2005.08.039.
  • Pan, J., R. Zhang, Q. Lu, Z. Zha, and S. Bani. 2017. Experimental study on premixed methane-air catalytic combustion in rectangular micro channel. Appl. Therm. Eng. 117:1–7. doi:10.1016/j.applthermaleng.2017.02.008.
  • Pan, J. F., D. Wu, Y. X. Liu, H. F. Zhang, A. K. Tang, and H. Xue. 2015. Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor. Appl. Energy 160:802–07. doi:10.1016/j.apenergy.2014.12.049.
  • Smyth, S. A., and D. C. Kyritsis. 2012. Experimental determination of the structure of catalytic micro-combustion flows over small-scale flat plates for methane and propane fuel. Combust. Flame 159:802–16. doi:10.1016/j.combustflame.2011.08.022.
  • Wan, J. L., A. W. Fan, H. Yao, and W. Liu. 2015. Effect of thermal conductivity of solid wall on combustion efficiency of a micro-combustor with cavities. Energy Convers. Manage. 96:605–12. doi:10.1016/j.enconman.2015.03.030.
  • Wu, -K.-K., Y.-C. Chang, C.-H. Chen, and Y.-D. Chen. 2010. High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 89:2455–62. doi:10.1016/j.fuel.2010.02.002.
  • Yang, W., L. Li, A. Fan, and H. Yao. 2018. Effect of oxygen enrichment on combustion efficiency of lean H 2/N 2/O 2 flames in a micro cavity-combustor. Chem. Eng. Process. 127:50–57. doi:10.1016/j.cep.2018.03.019.
  • Zhong, B. J., and J. H. Wang. 2010. Experimental study on premixed CH4/air mixture combustion in micro Swiss-roll combustors. Combust. Flame 157:2222–29. doi:10.1016/j.combustflame.2010.07.014.
  • Zhong, B. J., and F. Yang. 2012. Characteristics of hydrogen-assisted catalytic ignition of n-butane/air mixtures. Int. J. Hydrogen Energy 37:8716–23. doi:10.1016/j.ijhydene.2012.02.042.
  • Zhong, B. J., Q. T. Yang, and F. Yang. 2010. Hydrogen-assisted catalytic ignition characteristics of different fuels. Combust. Flame 157:2005–07. doi:10.1016/j.combustflame.2010.06.014.
  • Zhong, B.-J., and Y.-W. Yu. 2016. The surface and gas-phase reactions in microscale catalytic partial oxidation of n -butane/air mixture. Fuel 186:623–28. doi:10.1016/j.fuel.2016.09.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.