1,113
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Using Machine Learning to Construct Velocity Fields from OH-PLIF Images

, , &
Pages 93-116 | Received 09 Feb 2019, Accepted 21 Sep 2019, Published online: 20 Oct 2019

References

  • An, Q., and A. M. Steinberg. 2019. The role of strain rate, local extinction, and hydrodynamic instability on transition between attached and lifted swirl flames. Combust. Flame 199:267–78. doi:10.1016/j.combustflame.2018.10.029.
  • Barwey, S., M. Hassanaly, Q. An, V. Raman, and A. M. Steinberg. 2019. Experimental data-based reduced-order model for analysis and prediction of flame transition in gas turbine combustors. Combust. Theor. Model. 1–27. doi:10.1080/13647830.2019.1602286.
  • Berkooz, G., P. Holmes, and J. L. Lumley. 1993. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1):539–75. doi:10.1146/annurev.fl.25.010193.002543.
  • Boxx, I., C. Slabaugh, P. Kutne, R. P. Lucht, and W. Meier. 2015. 3kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure. Proc. Combust. Inst. 35 (3):3793–802. doi:10.1016/j.proci.2014.06.090.
  • Caux-Brisebois, V., A. M. Steinberg, C. M. Arndt, and W. Meier. 2014. Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model combustor. Combust. Flame 161 (12):3166–80. doi:10.1016/j.combustflame.2014.05.020.
  • Chew, L. P. 1989. Constrained delaunay triangulations. Algorithmica 4 (1–4):97–108. doi:10.1007/BF01553881.
  • Chterev, I., C. W. Foley, D. Foti, S. Kostka, A. W. Caswell, N. Jiang, A. Lynch, D. R. Noble, S. Menon, J. M. Seitzman, et al. 2014. Flame and flow topologies in an annular swirling flow. Combust. Sci. Technol. 186 (8):1041–74. doi:10.1080/00102202.2014.882916.
  • Dumoulin, V., and F. Visin. 2016. A guide to convolution arithmetic for deep learning.
  • Everson, R., and L. Sirovich. 1995. Karhunen–Loeve procedure for gappy data. J. Opt. Soc. Am. A 12 (8):1657–64. doi:10.1364/JOSAA.12.001657.
  • Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. MIT press.
  • Hecht-Nielsen, R. 1992. Theory of the backpropagation neural network. In Neural networks for perception, Elsevier. 65–93.
  • Keane, R. D., and R. J. Adrian. 1992. Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49 (3):191–215. doi:10.1007/BF00384623.
  • Kingma, D. P., and J. Ba. 2014. Adam: A method for stochastic optimization. Unpublished.
  • Koo, H., M. Hassanaly, V. Raman, M. E. Mueller, and K. P. Geigle. 2017. Large-eddy simulation of soot formation in a model gas turbine combustor. J. Eng. Gas Turbines Power 139 (3):031503. doi:10.1115/1.4034448.
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–105.
  • Lapeyre, C. J., A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot. 2019. Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combust. Flame 203:255–64. doi:10.1016/j.combustflame.2019.02.019.
  • Lawrence, S., C. L. Giles, A. C. Tsoi, and A. D. Back. 1997. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Networks 8 (1):98–113. doi:10.1109/72.554195.
  • LeCun, Y., and Y. Bengio. 1995. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Networks 3361 (10):1995.
  • Meier, W. E., P. Weigand, X. R. Duan, and R. Giezendanner-Thoben. 2007. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 150 (1–2):2–26. doi:10.1016/j.combustflame.2007.04.002.
  • O’Connor, J., and T. C. Lieuwen. 2011. Disturbance field characteristics of a transversely excited burner. Combust. Sci. Technol. 183 (5):427–43. doi:10.1080/00102202.2010.529478.
  • Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. 2017. Automatic differentiation in PyTorch. 31st Conference on Neural Information Processing Systems, Long Beach, CA.
  • Raman, V., and M. Hassanaly. 2019. Emerging trends in numerical simulations of combustion systems. Proc. Combust. Inst. 37 (2):2073–89. doi:10.1016/j.proci.2018.07.121.
  • Saini, P., C. M. Arndt, and A. M. Steinberg. 2016. Development and evaluation of gappy- POD as a data reconstruction technique for noisy PIV measurements in gas turbine combustors. Exp. Fluids 57 (7):122. doi:10.1007/s00348-016-2208-7.
  • Sarkar, S., K. G. Lore, and S. Sarkar. 2015. Early detection of combustion instability by neural-symbolic analysis on hi-speed video. Proceedings of the International Conference on Cognitive Computation, Montreal, Canada, 1583, 93–101.
  • Sirovich, L. 1987. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45 (3):561–71. doi:10.1090/qam/1987-45-03.
  • Song, X., F. Yamamoto, M. Iguchi, and Y. Murai. 1999. A new tracking algorithm of PIV and removal of spurious vectors using Delaunay tessellation. Exp. Fluids 26 (4):371–80. doi:10.1007/s003480050300.
  • Steinberg, A. M., I. Boxx, M. Stöhr, C. D. Carter, and W. Meier. 2010. Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor. Combust. Flame 157 (12):2250–66. doi:10.1016/j.combustflame.2010.07.011.
  • Steinberg, A. M., J. F. Driscoll, and S. L. Ceccio. 2008. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44 (6):985–99. doi:10.1007/s00348-007-0458-0.
  • Su, L. K., and W. J. Dahm. 1996a. Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. I. Assessment of errors. Phys. Fluids 8 (7):1869–82. doi:10.1063/1.868969.
  • Su, L. K., and W. J. Dahm. 1996b. Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. II. Experimental results. Phys. Fluids 8 (7):1883–906. doi:10.1063/1.868970.
  • Taamallah, S., Z. A. LaBry, S. J. Shanbhogue, and A. F. Ghoniem. 2015. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures. Proc. Combust. Inst. 35 (3):3273–82. doi:10.1016/j.proci.2014.07.002.
  • Temme, J. E., P. M. Allison, and J. F. Driscoll. 2014. Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV. Combust. Flame 161 (4):958–70. doi:10.1016/j.combustflame.2013.09.021.
  • Thumuluru, S. K., and T. C. Lieuwen. 2009. Characterization of acoustically forced swirl flame dynamics”. Proc. Combust. Inst. 32 (2):2893–900. doi:10.1016/j.proci.2008.05.037.
  • Willcox, K. 2006. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 35 (2):208–26. doi:10.1016/j.compfluid.2004.11.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.