196
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Iodine Release by Combustion of Composite Mg∙Ca(IO3)2 Powder

, , , & ORCID Icon
Pages 1042-1054 | Received 01 Jul 2019, Accepted 10 Oct 2019, Published online: 17 Oct 2019

References

  • Chintersingh, K.-L., Q. Nguyen, M. Schoenitz, and E. L. Dreizin. 2016. Combustion of boron particles in products of an air–acetylene flame. Combust. Flame 172:194–205. doi:10.1016/j.combustflame.2016.07.014.
  • Clark, B. R., and M. L. Pantoya. 2010. The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria. Phys. Chem. Chem. Phys. 12:12653–57. doi:10.1039/c0cp00473a.
  • Dreizin, E. L., and M. Schoenitz. 2009. “Nano-composite energetic powders prepared by arrested reactive milling.” In US Patent 7,524,355
  • Eneh, O. C. 2012. Biological weapons-agents for life and environmental destruction. Res. J. Environ. Toxicol. 6:65–87. doi:10.3923/rjet.2012.65.87.
  • Farley, C., and M. Pantoya. 2010. Reaction kinetics of nanometric aluminum and iodine pentoxide. J Therm Anal Calorim 102:609–13. doi:10.1007/s10973-010-0915-5.
  • Feng, J., G. Jian, Q. Liu, and M. R. Zachariah. 2013. Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications. ACS Appl. Mater. Interfaces 5:8875–80. doi:10.1021/am4028263.
  • Grinshpun, S. A., A. Adhikari, C. Li, T. Reponen, M. Yermakov, M. Schoenitz, E. Dreizin, M. Trunov, and S. Mohan. 2010a. Thermal inactivation of airborne viable Bacillus subtilis spores by short-term exposure in axially heated air flow. J. Aerosol Sci. 41:352–63. doi:10.1016/j.jaerosci.2010.01.007.
  • Grinshpun, S. A., A. Adhikari, M. Yermakov, T. Reponen, E. Dreizin, M. Schoenitz, V. Hoffmann, and S. Zhang. 2012. Inactivation of aerosolized Bacillus atrophaeus (BG) endospores and MS2 viruses by combustion of reactive materials. Environ. Sci. Technol. 46:7334–41. doi:10.1021/es300537f.
  • Grinshpun, S. A., C. Li, A. Adhikari, M. Yermakov, T. Reponen, M. Schoenitz, E. Dreizin, V. Hoffmann, and M. Trunov. 2010b. Method for studying survival of airborne viable microorganisms in combustion environments: Development and evaluation. Aerosol Air Qual. Res. 10:414–24. doi:10.4209/aaqr.2010.05.0041.
  • Grinshpun, S. A., M. Yermakov, R. Indugula, A. Abraham, M. Schoenitz, and E. L. Dreizin. 2017. Aluminum-based materials for inactivation of aerosolized spores of Bacillus anthracis surrogates. Aerosol Sci. Technol. 51:224–34. doi:10.1080/02786826.2016.1257109.
  • He, C., J. P. Hooper, and J. M. Shreeve. 2016. Iodine-rich imidazolium iodate and periodate salts: En route to single-based biocidal agents. Inorg. Chem. 55:12844–50. doi:10.1021/acs.inorgchem.6b02195.
  • Henderson, J., A. W. Longbottom, A. M. Milne, J. M. Lightstone, C. Milby, D. Stamatis, F. R. Svingala, A. L. Daniels, M. Bensman, M. Bohmke, et al. 2015. Experiments and modeling for biocidal effects of explosives. Propellants Explos. Pyrotech. 40:712–19. doi:10.1002/prep.v40.5.
  • Hodgkinson, J., and R. P. Tatam. 2013. Optical gas sensing: A review. Meas. Sci. Technol. 24:012004. doi:10.1088/0957-0233/24/1/012004.
  • Johnson, C. E., and K. T. Higa. 2013. “Iodine-rich biocidal reactive materials.” In Materials Research Society Symposium Proceedings, 2013.46/1-13/46/6. Boston, MA: Cambridge University Press. doi:10.1557/opl.2013.46.
  • Liu, X., M. Schoenitz, and E. L. Dreizin. 2017. Boron-based reactive materials with high concentrations of iodine as a biocidal additive. Chem. Eng. J. 325:495–501. doi:10.1016/j.cej.2017.05.100.
  • Liu, X., M. Schoenitz, and E. L. Dreizin. 2018. Combustion of Mg and composite Mg·S powders in different oxidizers. Combust. Flame 195:292–302. doi:10.1016/j.combustflame.2018.03.036.
  • Liu, X., M. Schoenitz, and E. L. Dreizin. 2019. Preparation, ignition, and combustion of magnesium-calcium iodate reactive nano-composite powders. Chem. Eng. J. 359:955–62. doi:10.1016/j.cej.2018.11.091.
  • McBride, B. J., and S. Gordon. 1996. Computer program for calculation of complex chemical equilibrium compositions and applications II. Users manual and program description. In NASA RP 1311. Cleveland, OH: NASA Glenn Research Center.
  • Murzyn, C., A. Sims, H. Krier, and N. Glumac. 2018. High speed temperature, pressure, and water vapor concentration measurement in explosive fireballs using tunable diode laser absorption spectroscopy. Opt. Lasers Eng. 110:186–92. doi:10.1016/j.optlaseng.2018.06.005.
  • Nakpan, W., S. A. Grinshpun, M. Yermakov, R. Indugula, T. Reponen, S. Wang, M. Schoenitz, and E. L. Dreizin. 2018. Inactivation of aerosolized surrogates of Bacillus anthracis spores by combustion products of aluminum- and magnesium-based reactive materials: Effect of exposure time. Aerosol Sci. Technol. 52:579–87. doi:10.1080/02786826.2018.1432028.
  • Oxley, J. C., J. L. Smith, M. M. Porter, M. J. Yekel, and J. A. Canaria. 2017. Potential Biocides: Iodine-Producing Pyrotechnics. Propellants Explos. Pyrotech. 42:960–73. doi:10.1002/prep.v42.8.
  • Sullivan, K. T., N. W. Piekiel, S. Chowdhury, C. Wu, M. R. Zachariah, and C. E. Johnson. 2011. Ignition and combustion characteristics of nanoscale Al/AgIO3: A potential energetic biocidal system. Combust. Sci. Technol. 183:285–302. doi:10.1080/00102202.2010.496378.
  • Wang, H., D. J. Kline, M. Rehwoldt, and M. R. Zachariah. 2018a. Ignition and combustion characterization of Ca(IO3)2-based pyrotechnic composites with B, Al, and Ti. Propellants Explos. Pyrotech. 43:977–85. doi:10.1002/prep.v43.10.
  • Wang, H., G. Jian, W. Zhou, J. B. DeLisio, V. T. Lee, and M. R. Zachariah. 2015. Metal iodate-based energetic composites and their combustion and biocidal performance. ACS Appl. Mater. Interfaces 7:17363–70. doi:10.1021/acsami.5b04589.
  • Wang, S., A. Abraham, Z. Zhong, M. Schoenitz, and E. L. Dreizin. 2016a. Ignition and combustion of boron-based Al·B·I2 and Mg·B·I2 composites. Chem. Eng. J. 293:112–17. doi:10.1016/j.cej.2016.02.071.
  • Wang, S., M. Schoenitz, and E. L. Dreizin. 2017b. Combustion of boron and boron-containing reactive composites in laminar and turbulent air flows. Combust. Sci. Technol. 189:683–97. doi:10.1080/00102202.2016.1246441.
  • Wang, S., M. Schoenitz, S. A. Grinshpun, M. Yermakov, and E. L. Dreizin. 2018b. Biocidal effectiveness of combustion products of iodine-bearing reactive materials against aerosolized bacterial spores. J. Aerosol Sci. 116:106–15. doi:10.1016/j.jaerosci.2017.11.007.
  • Wang, S., S. Mohan, and E. L. Dreizin. 2016b. Effect of flow conditions on burn rates of metal particles. Combust. Flame 168:10–19. doi:10.1016/j.combustflame.2016.03.014.
  • Wang, S., X. Liu, M. Schoenitz, and E. L. Dreizin. 2017a. Nanocomposite thermites with calcium iodate oxidizer. Propellants Explos. Pyrotech. 42:284–92. doi:10.1002/prep.201600213.
  • Wu, T., A. Sybing, X. Wang, and M. R. Zachariah. 2017. Aerosol synthesis of phase pure iodine/iodic biocide microparticles. J. Mater. Res. 32:890–96. doi:10.1557/jmr.2017.6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.