427
Views
7
CrossRef citations to date
0
Altmetric
Research Article

CFD Investigation of Flame and Pressure Wave Propagation through Variable Concentration Methane-Air Mixtures in a Tube Closed at One End

, ORCID Icon, , , & ORCID Icon
Pages 1203-1230 | Received 28 Aug 2019, Accepted 24 Oct 2019, Published online: 07 Nov 2019

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017. Deflagration of premixed methane–Air in a largescale detonation tube. Process Saf Environ. 109:374–86. doi:10.1016/j.psep.2017.03.035.
  • Akkerman, V., V. Bychkov, A. Petchenko, and L. E. Eriksson. 2006. Accelerating flames in cylindrical tubes with nonslip at the walls. Combust. Flame 145:206–19. doi:10.1016/j.combustflame.2005.10.011.
  • Akkerman, V., C. K. Law, V. Bychkov, and L. E. Eriksson. 2010. Analysis of flame acceleration induced by wall friction in open tubes. Phys. Fluids 22:053606. doi:10.1063/1.3425646.
  • Arntzen, B. J. 1998. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries. Ph.D Thesis, Norwegian University of Science and Technology.
  • Bradley, D., M. Lawes, and K. Liu. 2008. Turbulent flame speeds in ducts and the deflagration/detonation transition. Combust. Flame 154:96–108. doi:10.1016/j.combustflame.2008.03.011.
  • Bychkov, V., S. M. Golberg, M. A. Liberman, A. I. Kleev, and L. E. Eriksson. 1997. Numerical simulation of curved flames in cylindrical tubes. Comb. Sci. And Tech. 129:217–42. doi:10.1080/00102209708935727.
  • Bychkov, V., A. Petchenko, V. Akkerman, and L. E. Eriksson. 2005. Theory and modeling of accelerating flames in tubes. Phys. Rev. E 72:046307. doi:10.1103/PhysRevE.72.046307.
  • Chen, J., M. Hiu, and Y. Chen. 2015. Optimizing progress variable definition in flamelet-based dimension reduction in combustion. Appl. Math. Mech. 36:1481–98. doi:10.1007/s10483-015-1997-7.
  • Ciccarelli, g., and s. Dorofeev. 2008. Flame acceleration and transition to detonation in ducts. Prog. Energ. Combust. 34:499–550. doi:10.1016/j.pecs.2007.11.002.
  • Clanet, C., and G. Searby. 1996. On the “Tulip flame” phenomenon. Combust. Flame 105:225–38. doi:10.1016/0010-2180(95)00195-6.
  • Dhillon, B. S. 2010. Mine safety: A modern approach. In Springer science & business media. Berlin, Germany: Springer.
  • gaydon, A. G., and H. G. Wolfhard. 1979. Flames: Their structure, radiation, and temperature, 336. Fourth ed. New York: Wiley.
  • Hisken, H., G. A. Enstad, P. Middha, and K. Van Wingerden. 2015. Investigation of concentration effects on the flame acceleration in vented channels. J. Loss Prev. Process Ind. 36:447–59. doi:10.1016/j.jlp.2015.04.005.
  • Hjertager, B. H. 1993. Computer modelling of turbulent gas explosions in complex 2D and 3D geometries. J. Hazard. Mater. 34:173–97. doi:10.1016/0304-3894(93)85004-X.
  • Jarosinski, J. 1984. The thickness of laminar flames. Combustion Flame 56:337–42. doi:10.1016/0010-2180(84)90067-1.
  • Kazakov, K. A. 2005. On-shell description of stationary flames. Phys. Fluids 17:032107. doi:10.1063/1.1864132.
  • Kazakov, K. A. 2016. Premixed flame propagation in vertical tubes. Phys. Fluids 28:042103. doi:10.1063/1.4944684.
  • Kessler, D. A., V. N. Gamezo, and E. S. Oran. 2010. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems. Combust. Flame 157:2063–77. doi:10.1016/j.combustflame.2010.04.011.
  • Khan, F. I., and S. A. Abbasi. 1999. Major accidents in process industries and an analysis of causes and consequences. J.Loss Prev. Process Ind. 12:361–78. doi:10.1016/S0950-4230(98)00062-X.
  • Kindracki, J., A. Kobiera, G. Rarata, and P. Wolanski. 2007. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels. J. Loss Prev. Process Ind. 20:551–61. doi:10.1016/j.jlp.2007.05.010.
  • Knystautas, R., J. H. Lee, and C. M. Guirao. 1982. The critical tube diameter for detonation failure in hydrocarbon-air mixtures. Combust. Flame 48:63–83. doi:10.1016/0010-2180(82)90116-X.
  • Kurdyumov, V. N., and M. Matalon. 2015. Self-accelerating flames in long narrow open channels. Proc. Combust. Inst 35:921–28. doi:10.1016/j.proci.2014.05.082.
  • Launder, B. E., and D. B. Spalding. 1974. The numerical computation of turbulent flows. Computer Methods Appl. Mech. Eng. 3:269–89. doi:10.1016/0045-7825(74)90029-2.
  • Law, C. K., A. Makino, and T. F. LU. 2006. On the off-stoichiometric peaking of adiabatic flame temperature. Combustion Flame 145:808–19. doi:10.1016/j.combustflame.2006.01.009.
  • Li, J., J. Ning, C. B. Kiyanda, and H. D. Ng. 2016. Numerical simulations of cellular detonation diffraction in a stable gaseous mixture. Propul. Power Res. 5:177–83. doi:10.1016/j.jppr.2016.07.004.
  • Magnussen, B. F., and B. H. Hjertager. 1976. On the mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. 16th Symp. (Int.) on combustion and flame, 719–29. Pittsburgh, PA: The Combustion Institute.
  • Makarov, D., F. Verbecke, V. Molkov, O. Roe, M. Skotenne, A. Kotchourko, A. Lelyakin, J. Yanez, O. Hansen, and P. Middha. 2009. An inter-comparison exercise on CFD model capabilities to predict a hydrogen explosion in a simulated vehicle refuelling environment. Int. J. Hydrogen Energ. 34:2800–14. doi:10.1016/j.ijhydene.2008.12.067.
  • Middha, P., and O. Hansen. 2009. Using computational fluid dynamics as a tool for hydrogen safety studies. J. Loss Prev. Process Ind. 22:295–302. doi:10.1016/j.jlp.2008.10.006.
  • Oran, E. S., V. N. Gamezo, and D. A. Kessler. 2011. Deflagrations, detonations, and the deflagration-to-detonation transition in methane-air mixtures. DTIC Doc.
  • Oran, E. S., V. N. Gamezo, and R. K. Zipf Jr. 2015. Large-scale experiments and absolute detonability of methane/air mixtures. Combust. Sci. Technol. 187:324–41. doi:10.1080/00102202.2014.976308.
  • Park, D. J., and Y. S. Lee. 2009. A comparison on predictive models of gas explosions. Korean J. Chem. Eng. 26:313–23. doi:10.1007/s11814-009-0054-5.
  • Patankar, S. V., and D. B. Spalding. 1972. A calculation procedure fro heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15:1787–806. doi:10.1016/0017-9310(72)90054-3.
  • Pelce-Savornin, C., J. Quinard, and G. Searby. 1958. The flow field of a curved flame propagating freely upwards. Comb. Sci. And Tech. 58:337–46. doi:10.1080/00102208808923971.
  • Peng, Z., E. Doroodchi, Y. Alghamdi, K. Shah, C. Luo, and B. Moghtaderi. 2015. CFD-DEM simulation of solid circulation rate in the cold flow model of chemical looping systems. Chem. Eng. Res. Des. 95:262–80. doi:10.1016/j.cherd.2014.11.005.
  • Peng, Z., J. Zanganeh, R. Ingle, P. Nakod, D. F. Fletcher, and B. Moghtaderi. 2019. Effect of tube size on flame and pressure wave propagation in a tube closed at one end: A numerical study. Combust. Sci. Technol. doi:10.1080/00102202.2019.1622534.
  • Phylaktou, H., G. Andrews, and P. Herath. 1990. Fast flame speeds and rates of pressure rise in the initial period of gas explosions in large L/D cylindrical enclosures. J. Loss Prev.Process Ind. 3:355–64. doi:10.1016/0950-4230(90)80005-U.
  • Piece, C. D. 2001. Progress-variable approach for large-eddy simulation of turbulence combustion. Ph.D Thesis, Stanford University.
  • Radford, J. 2015. What happened tragic day of Mt Kembla Mine disaster. Illawarra Mercury website, http://www.illawarramercury.com.au/story/2441786/what-happened-tragic-day-of-mt-kembla-mine-disaster/). Accessed 14 August 2015.
  • Rian, K., T. Evanger, B. Vembe, N. Lilleheie, B. Lakså, B. Hjertager, and B. F. Magnussen. 2016. Coherent computational analysis of large-scale explosions and fires in complex geometries – From combustion science to a safer oil and gas industry. Chem. Eng. Trans. 48:175–80.
  • Salzano, E., F. S. marra, G. Russo, and J. H. S. Lee. 2002. Numerical simulation of turbulent gas flames in tubes. J. Hazard. Mater. 95:233–47. doi:10.1016/S0304-3894(02)00161-9.
  • shelkin, K. I. 1940. Influence of tube walls on detonation ignition. Zh. Eksp. Teor. Fiz. 10:823.
  • Spalding, D. B. 1955. Some fundamentals of combustion. Butterworth Sci.
  • Taylor, B. D., D. A. Kessler, V. N. Gamezo, and E. S. Oran. 2013. Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proc. Combust. Inst 34:2009–16. doi:10.1016/j.proci.2012.05.045.
  • Turns, S. R. 1996. To combustion: Concepts and applications. In An introduction, 45. New York: McGraw-Hill.
  • Valiev, D., V. Bychkov, V. Akkerman, and L. E. Eriksson. 2009. Different stages of flame acceleration from slowing burning to Chapman-Jouguet deflagration. Phys. Rev. E 80:036317. doi:10.1103/PhysRevE.80.036317.
  • Valiev, D., V. Bychkov, V. Akkerman, L. E. Eriksson, and M. Marklund. 2008. Heating of the fuel mixture due to viscous stress ahead of accelerating flames in deflagration-to-detonation transition. Phys. Lett. A 372:4850–57. doi:10.1016/j.physleta.2008.04.066.
  • Van Oijen, J. A., and L. P. H. De Goey. 2000. Modelling of premixed laminar flames using Flamelet-Generated manifolds. Combust. Sci. Tech. 161:113–37. doi:10.1080/00102200008935814.
  • Van Oijen, J. A., and L. P. H. De Goey. 2002. Modelling of premixed counter-flow flames using the flamelet-generated manifold method. Combust. Theory Model 6:463–78. doi:10.1088/1364-7830/6/3/305.
  • Van Oijen, J. A., F. A. Lammers, and L. P. H. De Goey. 2001. Modeling of complex premixed burner systems by using Flamelet-Generated Manifolds. Combust. Flame 127:2124–34. doi:10.1016/S0010-2180(01)00316-9.
  • Venetsanos, A., D. Baraldi, P. Adams, P. Heggem, and H. Wilkening. 2008. CFD modelling of hydrogen release, dispersion and combustion for automotive scenarios. J. Loss Prevent. Process Ind. 21:162–84. doi:10.1016/j.jlp.2007.06.016.
  • Wolański, P., C. W. Kauffman, M. Sichel, and J. A. Nicholls. 1981. Detonation of methane-air mixtures. Eighteenth Symposium (International) on Combustion, Waterloo, Canada. 1651–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.